Skip to main content

DNA Methylation-Associated Epigenetic Changes in Stress Tolerance of Plants

  • Chapter
  • First Online:
Molecular Stress Physiology of Plants

Abstract

Plants require optimum environmental conditions to grow, develop, and reproduce. Abiotic and biotic stresses have direct, negative effects on the biochemical and physiological processes which is associated with plant growth and development. These processes, under stress conditions, are significantly modified to increase a plant’s tolerance and to allow it to reproduce in the shortest possible time leads to escape or to minimize its exposure to unfavorable environmental conditions. As a consequence of these changes on its life cycle, a significant reduction in plant yield is expected. Plants have evolved several strategies to cope with environmental stresses which include expression level alteration of some genes through the introduction of epigenetic modifications, such as DNA methylation. DNA methylation plays a key role in gene expression by enhancing RNA-directed DNA methylation (RdDM) of genes and by inducing some histone modifications. Plants sometimes inherit their tolerance to stresses through the transmission of methylated genes from the parents. They may also produce new alleles by favoring homologous recombination at less methylated loci. However, sometimes this type of inheritance is not stable. DNA methylation may be significantly affected by the environment and cannot be experimentally manipulated or maintained. Therefore, extra care should be taken when designing strategies intended on producing plants with novel traits based on variations in DNA methylation. This chapter dealt with a brief account on epigenetic changes due to DNA methylation, histone modifications, and small RNA interference to modify gene expression pattern throughout the growth and developmental stages of plants to adjust different biotic and abiotic plants responses. The chapter will discuss also the possible use of genetic modifications to induce epigenetic changes that may improve plant traits, especially a plant’s ability to grow under abiotic and biotic stresses, and will try to answer fundamental questions on how DNA methylation, chromatin alteration, and small RNA molecules control gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agius F, Kapoor A, Zhu JK (2006) Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc Natl Acad Sci USA 103(31):11796–11801

    Article  PubMed  CAS  Google Scholar 

  • Akimoto K, Katakami H, Kim HJ, Ogawa E, Sano CM, Wada Y, Sano H (2007) Epigenetic inheritance in rice plants. Ann Bot 100(2):205–217

    Article  PubMed  CAS  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51:786–794

    Article  PubMed  CAS  Google Scholar 

  • Alvarez ME, Nota F, Cambiagno DA (2010) Epigenetic control of plant immunity. Mol Plant Pathol 11(4):563–576

    Article  PubMed  CAS  Google Scholar 

  • Anzola JM, Sieberer T, Ortbauer M, Butt H, Korbei B, Weinhofer I, Mullner AE, Luschnig C (2010) Putative Arabidopsis transcriptional adaptor protein (PROPORZ1) is required to modulate histone acetylation in response to auxin. Proc Natl Acad Sci USA 107(22):10308–10313

    Article  PubMed  CAS  Google Scholar 

  • Baek D, Jiang J, Chung JS, Wang B, Chen J, Xin Z, Shi H (2011) Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance. Plant Cell Physiol 52(1):149–161

    Article  PubMed  CAS  Google Scholar 

  • Bartee L, Bender J (2001) Two Arabidopsis methylation-deficiency mutations confer only partial effects on a methylated endogenous gene family. Nucleic Acids Res 29(10):2127–2134

    Article  PubMed  CAS  Google Scholar 

  • Bender J (1998) Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing. Trends Biochem Sci 23(7):252–256

    Article  PubMed  CAS  Google Scholar 

  • Bender J (2004) DNA methylation and epigenetics. Annu Rev Plant Biol 55:41–68. doi:10.1146/annurev.arplant.55.031903.141641

    Article  PubMed  CAS  Google Scholar 

  • Bennett RN, Wenke T, Freudenberg B, Mellon FA, Ludwig-Muller J (2005) The tu8 mutation of Arabidopsis thaliana encoding a heterochromatin protein 1 homolog causes defects in the induction of secondary metabolite biosynthesis. Plant Biol (Stuttg) 7(4):348–357

    Article  CAS  Google Scholar 

  • Berg A, Meza TJ, Mahic M, Thorstensen T, Kristiansen K, Aalen RB (2003) Ten members of the Arabidopsis gene family encoding methyl-CpG-binding domain proteins are transcriptionally active and at least one, AtMBD11, is crucial for normal development. Nucleic Acids Res 31(18):5291–5304

    Article  PubMed  CAS  Google Scholar 

  • Bilichak A, Ilnystkyy Y, Hollunder J, Kovalchuk I (2012) The progeny of Arabidopsis thaliana plants exposed to salt exhibit changes in DNA methylation, histone modifications and gene expression. PLoS One 7(1):doi:e3051510.1371/journal.pone.0030515

    Article  CAS  Google Scholar 

  • Bloom AJ (1979) Salt requirement for crassulacean acid metabolism in the annual succulent, Mesembryanthemum crystallinum. Plant Physiol 63(4):749–753

    Article  PubMed  CAS  Google Scholar 

  • Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states. Science 330(6004):612–616

    Article  PubMed  CAS  Google Scholar 

  • Borowska N, Idziak D, Hasterok R (2011) DNA methylation patterns of Brachypodium distachyon chromosomes and their alteration by 5-azacytidine treatment. Chromosome Res 19(8):955–967

    Article  PubMed  CAS  Google Scholar 

  • Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49(1):61–72

    Article  PubMed  CAS  Google Scholar 

  • Boyko A, Kovalchuk I (2010) Transgenerational response to stress in Arabidopsis thaliana. Plant Signal Behav 5(8):995–998

    Article  PubMed  CAS  Google Scholar 

  • Boyko A, Kovalchuk I (2011) Genetic and epigenetic effects of plant-pathogen interactions: an evolutionary perspective. Mol Plant 4(6):1014–1023. doi:10.1093/mp/ssr022

    Article  PubMed  CAS  Google Scholar 

  • Boyko A, Kathiria P, Zemp FJ, Yao Y, Pogribny I, Kovalchuk I (2007) Transgenerational changes in the genome stability and methylation in pathogen-infected plants: (virus-induced plant genome instability). Nucleic Acids Res 35(5):1714–1725

    Article  PubMed  CAS  Google Scholar 

  • Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollander J, Meins F Jr, Kovalchuk I (2010a) Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS One 5(3):e9514

    Article  PubMed  Google Scholar 

  • Boyko A, Golubov A, Bilichak A, Kovalchuk I (2010b) Chlorine ions but not sodium ions alter genome stability of Arabidopsis thaliana. Plant Cell Physiol 51(6):1066–1078. doi:10.1093/pcp/pcq048

    Article  PubMed  CAS  Google Scholar 

  • Brock RD, Davidson JL (1994) 5-azacytidine and gamma rays partially substitute for cold treatment in vernalising winter wheat. Environ Exp Bot 31:195–199

    Article  Google Scholar 

  • Burn JE, Bagnall DJ, Metzger JD, Dennis ES, Peacock WJ (1993) DNA methylation, vernalization, and the initiation of flowering. Proc Natl Acad Sci USA 90(1):287–291

    Article  PubMed  CAS  Google Scholar 

  • Castilho A, Neves N, Rufini-Castiglione M, Viegas W, Heslop-Harrison JS (1999) 5-Methylcytosine distribution and genome organization in triticale before and after treatment with 5-azacytidine. J Cell Sci 112(Pt 23):4397–4404

    PubMed  CAS  Google Scholar 

  • Chan SW, Zhang X, Bernatavichute YV, Jacobsen SE (2006) Two-step recruitment of RNA-directed DNA methylation to tandem repeats. PLoS Biol 4(11):e363

    Article  PubMed  CAS  Google Scholar 

  • Chen LT, Wu K (2010) Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response. Plant Signal Behav 5(10)

    Google Scholar 

  • Chen LT, Luo M, Wang YY, Wu K (2010a) Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot 61(12):3345–3353

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Lv S, Meng Y (2010b) Epigenetic performers in plants. Dev Growth Differ 52(6):555–566

    Article  PubMed  CAS  Google Scholar 

  • Cheng JC, Matsen CB, Gonzales FA, Ye W, Greer S, Marquez VE, Jones PA, Selker EU (2003) Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst 95(5):399–409

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12(2):133–139

    Article  PubMed  CAS  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452(7184):215–219. doi:10.1038/nature06745

    Article  PubMed  CAS  Google Scholar 

  • Covarrubias AA, Reyes JL (2010) Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant Cell Environ 33(4):481–489

    Article  PubMed  CAS  Google Scholar 

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401(6749):157–161

    Article  PubMed  CAS  Google Scholar 

  • Demetriou K, Kapazoglou A, Tondelli A, Francia E, Stanca MA, Bladenopoulos K, Tsaftaris AS (2009) Epigenetic chromatin modifiers in barley: I. Cloning, mapping and expression analysis of the plant specific HD2 family of histone deacetylases from barley, during seed development and after hormonal treatment. Physiol Plant 136(3):358–368

    Article  PubMed  CAS  Google Scholar 

  • Dyachenko OV, Zakharchenko NS, Shevchuk TV, Bohnert HJ, Cushman JC, Buryanov YI (2006) Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochemistry (Mosc) 71(4):461–465

    Article  CAS  Google Scholar 

  • Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21(35):5400–5413. doi:10.1038/sj.onc.1205651

    Article  PubMed  CAS  Google Scholar 

  • Engler P, Weng A, Storb U (1993) Influence of CpG methylation and target spacing on V(D)J recombination in a transgenic substrate. Mol Cell Biol 13(1):571–577

    PubMed  CAS  Google Scholar 

  • Finnegan EJ, Genger RK, Kovac K, Peacock WJ, Dennis ES (1998) DNA methylation and the promotion of flowering by vernalization. Proc Natl Acad Sci USA 95(10):5824–5829

    Article  PubMed  CAS  Google Scholar 

  • Gao MJ, Schafer UA, Parkin IA, Hegedus DD, Lydiate DJ, Hannoufa A (2003) A novel protein from Brassica napus has a putative KID domain and responds to low temperature. Plant J 33(6):1073–1086

    Article  PubMed  CAS  Google Scholar 

  • Gao MJ, Hegedus DD, Sharpe AG, Robinson SJ, Lydiate DJ, Hannoufa A (2007) Isolation and characterization of a GCN5-interacting protein from Arabidopsis thaliana. Planta 225(6):1367–1379

    Article  PubMed  CAS  Google Scholar 

  • Gendrel AV, Lippman Z, Yordan C, Colot V, Martienssen RA (2002) Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 297(5588):1871–1873. doi:10.1126/science.1074950

    Article  PubMed  CAS  Google Scholar 

  • Gruenbaum Y, Naveh-Many T, Cedar H, Razin A (1981a) Sequence specificity of methylation in higher plant DNA. Nature 292(5826):860–862

    Article  PubMed  CAS  Google Scholar 

  • Gruenbaum Y, Stein R, Cedar H, Razin A (1981b) Methylation of CpG sequences in eukaryotic DNA. FEBS Lett 124(1):67–71

    Article  PubMed  CAS  Google Scholar 

  • Guo M, Rupe MA, Yang X, Crasta O, Zinselmeier C, Smith OS, Bowen B (2006) Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Theor Appl Genet 113(5):831–845. doi:10.1007/s00122-006-0335-x

    Article  PubMed  CAS  Google Scholar 

  • Hashida SN, Kitamura K, Mikami T, Kishima Y (2003) Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus. Plant Physiol 132(3):1207–1216

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61(6):1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Hofner R, Vazquez-Moreno L, Winter K, Bohnert HJ, Schmitt JM (1987) Induction of crassulacean acid metabolism in Mesembryanthemum crystallinum by high salinity: mass increase and de novo synthesis of PEP-carboxylase. Plant Physiol 83(4):915–919

    Article  PubMed  CAS  Google Scholar 

  • Hugouvieux V, Kwak JM, Schroeder JI (2001) An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106(4):477–487

    Article  PubMed  CAS  Google Scholar 

  • Jackson JP, Johnson L, Jasencakova Z, Zhang X, PerezBurgos L, Singh PB, Cheng X, Schubert I, Jenuwein T, Jacobsen SE (2004) Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112(6):308–315

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen SE, Meyerowitz EM (1997) Hypermethylated SUPERMAN epigenetic alleles in arabidopsis. Science 277(5329):1100–1103

    Article  PubMed  CAS  Google Scholar 

  • Kakutani T (1997) Genetic characterization of late-flowering traits induced by DNA hypomethylation mutation in Arabidopsis thaliana. Plant J Cell Mol Biol 12(6):1447–1451

    Article  CAS  Google Scholar 

  • Kakutani T, Jeddeloh JA, Flowers SK, Munakata K, Richards EJ (1996) Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc Natl Acad Sci USA 93(22):12406–12411

    Article  PubMed  CAS  Google Scholar 

  • Kaldis A, Tsementzi D, Tanriverdi O, Vlachonasios KE (2011) Arabidopsis thaliana transcriptional co-activators ADA2b and SGF29a are implicated in salt stress responses. Planta 233(4):749–762

    Article  PubMed  CAS  Google Scholar 

  • Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle NC, Verbsky ML, Richards EJ (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163(3):1109–1122

    PubMed  CAS  Google Scholar 

  • Kant P, Kant S, Gordon M, Shaked R, Barak S (2007) STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol 145(3):814–830

    Article  PubMed  CAS  Google Scholar 

  • Kapazoglou A, Tondelli A, Papaefthimiou D, Ampatzidou H, Francia E, Stanca MA, Bladenopoulos K, Tsaftaris AS (2010) Epigenetic chromatin modifiers in barley: IV. The study of barley polycomb group (PcG) genes during seed development and in response to external ABA. BMC Plant Biol 10:73

    Article  PubMed  CAS  Google Scholar 

  • Kim W, Benhamed M, Servet C, Latrasse D, Zhang W, Delarue M, Zhou DX (2009) Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis. Cell Res 19(7):899–909

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Miura A, Choi YH, Kinoshita Y, Cao XF, Jacobsen SE, Fischer RL, Kakutani T (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303(5657):521–523. doi:10.1126/science.1089835

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita Y, Saze H, Kinoshita T, Miura A, Soppe WJ, Koornneef M, Kakutani T (2007) Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J 49(1):38–45

    Article  PubMed  CAS  Google Scholar 

  • Kovalchuk I, Kovalchuk O, Kalck V, Boyko V, Filkowski J, Heinlein M, Hohn B (2003) Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature 423(6941):760–762

    Article  PubMed  CAS  Google Scholar 

  • Kwak KJ, Kim YO, Kang H (2005) Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J Exp Bot 56(421):3007–3016

    Article  PubMed  CAS  Google Scholar 

  • Laubinger S, Zeller G, Henz SR, Buechel S, Sachsenberg T, Wang JW, Ratsch G, Weigel D (2010) Global effects of the small RNA biogenesis machinery on the Arabidopsis thaliana transcriptome. Proc Natl Acad Sci USA 107(41):17466–17473

    Article  PubMed  CAS  Google Scholar 

  • Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52(1):133–146

    Article  PubMed  CAS  Google Scholar 

  • Liu ZQ, Gao J, Dong AW, Shen WH (2009) A truncated Arabidopsis NUCLEOSOME ASSEMBLY PROTEIN 1, AtNAP1;3 T, alters plant growth responses to abscisic acid and salt in the Atnap1;3-2 mutant. Mol Plant 2(4):688–699

    Article  PubMed  CAS  Google Scholar 

  • Long Y, Xia W, Li R, Wang J, Shao M, Feng J, King GJ, Meng J (2011) Epigenetic QTL mapping in Brassica napus. Genetics 189(3):1093–U1585. doi:10.1534/genetics.111.131615

    Article  PubMed  CAS  Google Scholar 

  • Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann Bot 94(4):481–495

    Article  PubMed  CAS  Google Scholar 

  • Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38(8):948–952. doi:10.1038/ng1841

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Matzke AJ, Pruss GJ, Vance VB (2001) RNA-based silencing strategies in plants. Curr Opin Genet Dev 11(2):221–227

    Article  PubMed  CAS  Google Scholar 

  • Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJ (2007) Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10(5):512–519

    Article  PubMed  CAS  Google Scholar 

  • Mirouze M, Lieberman-Lazarovich M, Aversano R, Bucher E, Nicolet J, Reinders J, Paszkowski J (2012) Loss of DNA methylation affects the recombination landscape in Arabidopsis. Proc Natl Acad Sci USA 109(15):5880–5885. doi:10.1073/pnas.1120841109

    Article  PubMed  CAS  Google Scholar 

  • Nelissen H, De Groeve S, Fleury D, Neyt P, Bruno L, Bitonti MB, Vandenbussche F, Van der Straeten D, Yamaguchi T, Tsukaya H, Witters E, De Jaeger G, Houben A, Van Lijsebettens M (2010) Plant elongator regulates auxin-related genes during RNA polymerase II transcription elongation. Proc Natl Acad Sci USA 107(4):1678–1683

    Article  PubMed  CAS  Google Scholar 

  • Okitsu CY, Hsieh C-L (2007) DNA methylation dictates histone H3K4 methylation. Mol Cell Biol 27(7):2746–2757. doi:10.1128/mcb.02291-06

    Article  PubMed  CAS  Google Scholar 

  • Papaefthimiou D, Likotrafiti E, Kapazoglou A, Bladenopoulos K, Tsaftaris A (2010) Epigenetic chromatin modifiers in barley: III. Isolation and characterization of the barley GNAT-MYST family of histone acetyltransferases and responses to exogenous ABA. Plant Physiol Biochem 48(2–3):98–107

    Article  PubMed  CAS  Google Scholar 

  • Papp I, Mur LA, Dalmadi A, Dulai S, Koncz C (2004) A mutation in the Cap Binding Protein 20 gene confers drought tolerance to Arabidopsis. Plant Mol Biol 55(5):679–686

    Article  PubMed  CAS  Google Scholar 

  • Peng H, Zhang J (2009) Plant genomic DNA methylation in response to stresses: potential applications and challenges in plant breeding. Prog Nat Sci 19(9):1037–1045. doi:10.1016/j.pnsc.2008.10.014

    Article  CAS  Google Scholar 

  • Peng M, Cui Y, Bi YM, Rothstein SJ (2006) AtMBD9: a protein with a methyl-CpG-binding domain regulates flowering time and shoot branching in Arabidopsis. Plant J Cell Mol Biol 46(2):282–296

    Article  CAS  Google Scholar 

  • Pikaard CS (2006) Cell biology of the Arabidopsis nuclear siRNA pathway for RNA-directed chromatin modification. Cold Spring Harb Symp Quant Biol 71:473–480

    Article  PubMed  CAS  Google Scholar 

  • Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49(4):592–606

    Article  PubMed  CAS  Google Scholar 

  • Rios G, Gagete AP, Castillo J, Berbel A, Franco L, Rodrigo MI (2007) Abscisic acid and desiccation-dependent expression of a novel putative SNF5-type chromatin-remodeling gene in Pisum sativum. Plant Physiol Biochem 45(6–7):427–435

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  PubMed  CAS  Google Scholar 

  • Santi DV, Garrett CE, Barr PJ (1983) On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell 33(1):9–10

    Article  PubMed  CAS  Google Scholar 

  • Saze H, Shiraishi A, Miura A, Kakutani T (2008) Control of genic DNA methylation by a jmjC domain – containing protein in Arabidopsis thaliana. Science 319(5862):462–465. doi:10.1126/science.1150987

    Article  PubMed  CAS  Google Scholar 

  • Scebba F, De Bastiani M, Bernacchia G, Andreucci A, Galli A, Pitto L (2007) PRMT11: a new Arabidopsis MBD7 protein partner with arginine methyltransferase activity. Plant J 52(2):210–222

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, Weigel D, Lohmann JU (2003) Dissection of floral induction pathways using global expression analysis. Development 130(24):6001–6012

    Article  PubMed  CAS  Google Scholar 

  • Servet C, Benhamed M, Latrasse D, Kim W, Delarue M, Zhou DX (2008) Characterization of a phosphatase 2C protein as an interacting partner of the histone acetyltransferase GCN5 in Arabidopsis. Biochim Biophys Acta 1779(6–7):376–382

    PubMed  CAS  Google Scholar 

  • Shen J, Xie K, Xiong L (2010) Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses. Mol Genet Genomics 284(6):477–488

    Article  PubMed  CAS  Google Scholar 

  • Singer T, Yordan C, Martienssen RA (2001) Robertson’s Mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene Decrease in DNA Methylation (DDM1). Genes Dev 15(5):591–602

    Article  PubMed  CAS  Google Scholar 

  • Song CP, Galbraith DW (2006) AtSAP18, an orthologue of human SAP18, is involved in the regulation of salt stress and mediates transcriptional repression in Arabidopsis. Plant Mol Biol 60(2):241–257

    Article  PubMed  CAS  Google Scholar 

  • Soppe WJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T, Koornneef M, Peeters AJ (2000) The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6(4):791–802

    Article  PubMed  CAS  Google Scholar 

  • Springer NM, Kaeppler SM (2005) Evolutionary divergence of monocot and dicot methyl-CpG-binding domain proteins. Plant Physiol 138(1):92–104

    Article  PubMed  CAS  Google Scholar 

  • Sridha S, Wu K (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J 46(1):124–133

    Article  PubMed  CAS  Google Scholar 

  • Stangeland B, Rosenhave EM, Winge P, Berg A, Amundsen SS, Karabeg M, Mandal A, Bones AM, Grini PE, Aalen RB (2009) AtMBD8 is involved in control of flowering time in the C24 ecotype of Arabidopsis thaliana. Physiol Plant 136(1):110–126

    Article  PubMed  CAS  Google Scholar 

  • Steward N, Kusano T, Sano H (2000) Expression of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but also with altered DNA methylation status in cold-stressed quiescent cells. Nucleic Acids Res 28(17):3250–3259

    Article  PubMed  CAS  Google Scholar 

  • Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277(40):37741–37746

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019

    Article  PubMed  CAS  Google Scholar 

  • Tani E, Polidoros AN, Nianiou-Obeidat I, Tsaftaris AS (2005) DNA methylation patterns are differently affected by planting density in maize inbreds and their hybrids. Maydica 50:19–23

    Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13(2):132–138

    Article  PubMed  CAS  Google Scholar 

  • Vernon DM, Bohnert HJ (1992) A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. EMBO J 11(6):2077–2085

    PubMed  CAS  Google Scholar 

  • Vongs A, Kakutani T, Martienssen RA, Richards EJ (1993) Arabidopsis thaliana DNA methylation mutants. Science (New York, NY) 260(5116):1926–1928

    Article  CAS  Google Scholar 

  • Wada KC, Takeno K (2010) Stress-induced flowering. Plant Signal Behav 5(8):944–947

    Google Scholar 

  • Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J, Fu BY, Li ZK (2010) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62(6):1951–1960

    Article  PubMed  CAS  Google Scholar 

  • Xiao W, Custard KD, Brown RC, Lemmon BE, Harada JJ, Goldberg RB, Fischer RL (2006) DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell 18(4):805–814

    Article  PubMed  CAS  Google Scholar 

  • Yaish MW, Peng M, Rothstein SJ (2009) AtMBD9 modulates Arabidopsis development through the dual epigenetic pathways of DNA methylation and histone acetylation. Plant J 59(1):123–135

    Article  PubMed  CAS  Google Scholar 

  • Yaish MW, Colasanti J, Rothstein SJ (2011) The role of epigenetic processes in controlling flowering time in plants exposed to stress. J Exp Bot 62(11):3727–3735

    Article  PubMed  CAS  Google Scholar 

  • Zemach A, Gaspan O, Grafi G (2008) The three methyl-CpG-binding domains of AtMBD7 control its subnuclear localization and mobility. J Biol Chem 283(13):8406–8411

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126(6):1189–1201. doi:10.1016/j.cell.2006.08.003

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Zhang S, Zhang Y, Wang X, Li D, Li Q, Yue M, Zhang YE, Xu Y, Xue Y, Chong K, Bao S (2011) Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. Plant Cell 23(1):396–411. doi:10.1105/tpc.110.081356

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Chai Y, Liu B (2007) Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids. Plant Sci 172(5):930–938. doi:10.1016/j.plantsci.2007.01.002

    Article  CAS  Google Scholar 

  • Zhong L, Wang J-B (2007) The role of DNA hypermethylation in salt resistance of Triticum aestivum L. Wuhan Zhiwuxue Yanjiu 25(1):102–104

    CAS  Google Scholar 

  • Zhou C, Zhang L, Duan J, Miki B, Wu K (2005) HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 17(4):1196–1204

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Jeong JC, Zhu Y, Sokolchik I, Miyazaki S, Zhu JK, Hasegawa PM, Bohnert HJ, Shi H, Yun DJ, Bressan RA (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci USA 105(12):4945–4950

    Article  PubMed  CAS  Google Scholar 

  • Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39(1):61–69

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a generous grant from the college of Science, Sultan Qaboos University IG/Sci/Biol/11/04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud W. Yaish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Yaish, M.W. (2013). DNA Methylation-Associated Epigenetic Changes in Stress Tolerance of Plants. In: Rout, G., Das, A. (eds) Molecular Stress Physiology of Plants. Springer, India. https://doi.org/10.1007/978-81-322-0807-5_17

Download citation

Publish with us

Policies and ethics