DNA Methylation-Associated Epigenetic Changes in Stress Tolerance of Plants

  • Mahmoud W. Yaish


Plants require optimum environmental conditions to grow, develop, and reproduce. Abiotic and biotic stresses have direct, negative effects on the biochemical and physiological processes which is associated with plant growth and development. These processes, under stress conditions, are significantly modified to increase a plant’s tolerance and to allow it to reproduce in the shortest possible time leads to escape or to minimize its exposure to unfavorable environmental conditions. As a consequence of these changes on its life cycle, a significant reduction in plant yield is expected. Plants have evolved several strategies to cope with environmental stresses which include expression level alteration of some genes through the introduction of epigenetic modifications, such as DNA methylation. DNA methylation plays a key role in gene expression by enhancing RNA-directed DNA methylation (RdDM) of genes and by inducing some histone modifications. Plants sometimes inherit their tolerance to stresses through the transmission of methylated genes from the parents. They may also produce new alleles by favoring homologous recombination at less methylated loci. However, sometimes this type of inheritance is not stable. DNA methylation may be significantly affected by the environment and cannot be experimentally manipulated or maintained. Therefore, extra care should be taken when designing strategies intended on producing plants with novel traits based on variations in DNA methylation. This chapter dealt with a brief account on epigenetic changes due to DNA methylation, histone modifications, and small RNA interference to modify gene expression pattern throughout the growth and developmental stages of plants to adjust different biotic and abiotic plants responses. The chapter will discuss also the possible use of genetic modifications to induce epigenetic changes that may improve plant traits, especially a plant’s ability to grow under abiotic and biotic stresses, and will try to answer fundamental questions on how DNA methylation, chromatin alteration, and small RNA molecules control gene expression.


Histone Modification Methylation Level Crassulacean Acid Metabolism Homologue Recombination Frequency Ddm1 Mutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by a generous grant from the college of Science, Sultan Qaboos University IG/Sci/Biol/11/04.


  1. Agius F, Kapoor A, Zhu JK (2006) Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc Natl Acad Sci USA 103(31):11796–11801PubMedCrossRefGoogle Scholar
  2. Akimoto K, Katakami H, Kim HJ, Ogawa E, Sano CM, Wada Y, Sano H (2007) Epigenetic inheritance in rice plants. Ann Bot 100(2):205–217PubMedCrossRefGoogle Scholar
  3. Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51:786–794PubMedCrossRefGoogle Scholar
  4. Alvarez ME, Nota F, Cambiagno DA (2010) Epigenetic control of plant immunity. Mol Plant Pathol 11(4):563–576PubMedCrossRefGoogle Scholar
  5. Anzola JM, Sieberer T, Ortbauer M, Butt H, Korbei B, Weinhofer I, Mullner AE, Luschnig C (2010) Putative Arabidopsis transcriptional adaptor protein (PROPORZ1) is required to modulate histone acetylation in response to auxin. Proc Natl Acad Sci USA 107(22):10308–10313PubMedCrossRefGoogle Scholar
  6. Baek D, Jiang J, Chung JS, Wang B, Chen J, Xin Z, Shi H (2011) Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance. Plant Cell Physiol 52(1):149–161PubMedCrossRefGoogle Scholar
  7. Bartee L, Bender J (2001) Two Arabidopsis methylation-deficiency mutations confer only partial effects on a methylated endogenous gene family. Nucleic Acids Res 29(10):2127–2134PubMedCrossRefGoogle Scholar
  8. Bender J (1998) Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing. Trends Biochem Sci 23(7):252–256PubMedCrossRefGoogle Scholar
  9. Bender J (2004) DNA methylation and epigenetics. Annu Rev Plant Biol 55:41–68. doi: 10.1146/annurev.arplant.55.031903.141641 PubMedCrossRefGoogle Scholar
  10. Bennett RN, Wenke T, Freudenberg B, Mellon FA, Ludwig-Muller J (2005) The tu8 mutation of Arabidopsis thaliana encoding a heterochromatin protein 1 homolog causes defects in the induction of secondary metabolite biosynthesis. Plant Biol (Stuttg) 7(4):348–357CrossRefGoogle Scholar
  11. Berg A, Meza TJ, Mahic M, Thorstensen T, Kristiansen K, Aalen RB (2003) Ten members of the Arabidopsis gene family encoding methyl-CpG-binding domain proteins are transcriptionally active and at least one, AtMBD11, is crucial for normal development. Nucleic Acids Res 31(18):5291–5304PubMedCrossRefGoogle Scholar
  12. Bilichak A, Ilnystkyy Y, Hollunder J, Kovalchuk I (2012) The progeny of Arabidopsis thaliana plants exposed to salt exhibit changes in DNA methylation, histone modifications and gene expression. PLoS One 7(1):doi:e3051510.1371/journal.pone.0030515CrossRefGoogle Scholar
  13. Bloom AJ (1979) Salt requirement for crassulacean acid metabolism in the annual succulent, Mesembryanthemum crystallinum. Plant Physiol 63(4):749–753PubMedCrossRefGoogle Scholar
  14. Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states. Science 330(6004):612–616PubMedCrossRefGoogle Scholar
  15. Borowska N, Idziak D, Hasterok R (2011) DNA methylation patterns of Brachypodium distachyon chromosomes and their alteration by 5-azacytidine treatment. Chromosome Res 19(8):955–967PubMedCrossRefGoogle Scholar
  16. Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49(1):61–72PubMedCrossRefGoogle Scholar
  17. Boyko A, Kovalchuk I (2010) Transgenerational response to stress in Arabidopsis thaliana. Plant Signal Behav 5(8):995–998PubMedCrossRefGoogle Scholar
  18. Boyko A, Kovalchuk I (2011) Genetic and epigenetic effects of plant-pathogen interactions: an evolutionary perspective. Mol Plant 4(6):1014–1023. doi: 10.1093/mp/ssr022 PubMedCrossRefGoogle Scholar
  19. Boyko A, Kathiria P, Zemp FJ, Yao Y, Pogribny I, Kovalchuk I (2007) Transgenerational changes in the genome stability and methylation in pathogen-infected plants: (virus-induced plant genome instability). Nucleic Acids Res 35(5):1714–1725PubMedCrossRefGoogle Scholar
  20. Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollander J, Meins F Jr, Kovalchuk I (2010a) Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS One 5(3):e9514PubMedCrossRefGoogle Scholar
  21. Boyko A, Golubov A, Bilichak A, Kovalchuk I (2010b) Chlorine ions but not sodium ions alter genome stability of Arabidopsis thaliana. Plant Cell Physiol 51(6):1066–1078. doi: 10.1093/pcp/pcq048 PubMedCrossRefGoogle Scholar
  22. Brock RD, Davidson JL (1994) 5-azacytidine and gamma rays partially substitute for cold treatment in vernalising winter wheat. Environ Exp Bot 31:195–199CrossRefGoogle Scholar
  23. Burn JE, Bagnall DJ, Metzger JD, Dennis ES, Peacock WJ (1993) DNA methylation, vernalization, and the initiation of flowering. Proc Natl Acad Sci USA 90(1):287–291PubMedCrossRefGoogle Scholar
  24. Castilho A, Neves N, Rufini-Castiglione M, Viegas W, Heslop-Harrison JS (1999) 5-Methylcytosine distribution and genome organization in triticale before and after treatment with 5-azacytidine. J Cell Sci 112(Pt 23):4397–4404PubMedGoogle Scholar
  25. Chan SW, Zhang X, Bernatavichute YV, Jacobsen SE (2006) Two-step recruitment of RNA-directed DNA methylation to tandem repeats. PLoS Biol 4(11):e363PubMedCrossRefGoogle Scholar
  26. Chen LT, Wu K (2010) Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response. Plant Signal Behav 5(10)Google Scholar
  27. Chen LT, Luo M, Wang YY, Wu K (2010a) Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot 61(12):3345–3353PubMedCrossRefGoogle Scholar
  28. Chen M, Lv S, Meng Y (2010b) Epigenetic performers in plants. Dev Growth Differ 52(6):555–566PubMedCrossRefGoogle Scholar
  29. Cheng JC, Matsen CB, Gonzales FA, Ye W, Greer S, Marquez VE, Jones PA, Selker EU (2003) Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst 95(5):399–409PubMedCrossRefGoogle Scholar
  30. Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12(2):133–139PubMedCrossRefGoogle Scholar
  31. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452(7184):215–219. doi: 10.1038/nature06745 PubMedCrossRefGoogle Scholar
  32. Covarrubias AA, Reyes JL (2010) Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant Cell Environ 33(4):481–489PubMedCrossRefGoogle Scholar
  33. Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401(6749):157–161PubMedCrossRefGoogle Scholar
  34. Demetriou K, Kapazoglou A, Tondelli A, Francia E, Stanca MA, Bladenopoulos K, Tsaftaris AS (2009) Epigenetic chromatin modifiers in barley: I. Cloning, mapping and expression analysis of the plant specific HD2 family of histone deacetylases from barley, during seed development and after hormonal treatment. Physiol Plant 136(3):358–368PubMedCrossRefGoogle Scholar
  35. Dyachenko OV, Zakharchenko NS, Shevchuk TV, Bohnert HJ, Cushman JC, Buryanov YI (2006) Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochemistry (Mosc) 71(4):461–465CrossRefGoogle Scholar
  36. Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21(35):5400–5413. doi: 10.1038/sj.onc.1205651 PubMedCrossRefGoogle Scholar
  37. Engler P, Weng A, Storb U (1993) Influence of CpG methylation and target spacing on V(D)J recombination in a transgenic substrate. Mol Cell Biol 13(1):571–577PubMedGoogle Scholar
  38. Finnegan EJ, Genger RK, Kovac K, Peacock WJ, Dennis ES (1998) DNA methylation and the promotion of flowering by vernalization. Proc Natl Acad Sci USA 95(10):5824–5829PubMedCrossRefGoogle Scholar
  39. Gao MJ, Schafer UA, Parkin IA, Hegedus DD, Lydiate DJ, Hannoufa A (2003) A novel protein from Brassica napus has a putative KID domain and responds to low temperature. Plant J 33(6):1073–1086PubMedCrossRefGoogle Scholar
  40. Gao MJ, Hegedus DD, Sharpe AG, Robinson SJ, Lydiate DJ, Hannoufa A (2007) Isolation and characterization of a GCN5-interacting protein from Arabidopsis thaliana. Planta 225(6):1367–1379PubMedCrossRefGoogle Scholar
  41. Gendrel AV, Lippman Z, Yordan C, Colot V, Martienssen RA (2002) Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 297(5588):1871–1873. doi: 10.1126/science.1074950 PubMedCrossRefGoogle Scholar
  42. Gruenbaum Y, Naveh-Many T, Cedar H, Razin A (1981a) Sequence specificity of methylation in higher plant DNA. Nature 292(5826):860–862PubMedCrossRefGoogle Scholar
  43. Gruenbaum Y, Stein R, Cedar H, Razin A (1981b) Methylation of CpG sequences in eukaryotic DNA. FEBS Lett 124(1):67–71PubMedCrossRefGoogle Scholar
  44. Guo M, Rupe MA, Yang X, Crasta O, Zinselmeier C, Smith OS, Bowen B (2006) Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Theor Appl Genet 113(5):831–845. doi: 10.1007/s00122-006-0335-x PubMedCrossRefGoogle Scholar
  45. Hashida SN, Kitamura K, Mikami T, Kishima Y (2003) Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus. Plant Physiol 132(3):1207–1216PubMedCrossRefGoogle Scholar
  46. Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61(6):1041–1052PubMedCrossRefGoogle Scholar
  47. Hofner R, Vazquez-Moreno L, Winter K, Bohnert HJ, Schmitt JM (1987) Induction of crassulacean acid metabolism in Mesembryanthemum crystallinum by high salinity: mass increase and de novo synthesis of PEP-carboxylase. Plant Physiol 83(4):915–919PubMedCrossRefGoogle Scholar
  48. Hugouvieux V, Kwak JM, Schroeder JI (2001) An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106(4):477–487PubMedCrossRefGoogle Scholar
  49. Jackson JP, Johnson L, Jasencakova Z, Zhang X, PerezBurgos L, Singh PB, Cheng X, Schubert I, Jenuwein T, Jacobsen SE (2004) Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112(6):308–315PubMedCrossRefGoogle Scholar
  50. Jacobsen SE, Meyerowitz EM (1997) Hypermethylated SUPERMAN epigenetic alleles in arabidopsis. Science 277(5329):1100–1103PubMedCrossRefGoogle Scholar
  51. Kakutani T (1997) Genetic characterization of late-flowering traits induced by DNA hypomethylation mutation in Arabidopsis thaliana. Plant J Cell Mol Biol 12(6):1447–1451CrossRefGoogle Scholar
  52. Kakutani T, Jeddeloh JA, Flowers SK, Munakata K, Richards EJ (1996) Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc Natl Acad Sci USA 93(22):12406–12411PubMedCrossRefGoogle Scholar
  53. Kaldis A, Tsementzi D, Tanriverdi O, Vlachonasios KE (2011) Arabidopsis thaliana transcriptional co-activators ADA2b and SGF29a are implicated in salt stress responses. Planta 233(4):749–762PubMedCrossRefGoogle Scholar
  54. Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle NC, Verbsky ML, Richards EJ (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163(3):1109–1122PubMedGoogle Scholar
  55. Kant P, Kant S, Gordon M, Shaked R, Barak S (2007) STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol 145(3):814–830PubMedCrossRefGoogle Scholar
  56. Kapazoglou A, Tondelli A, Papaefthimiou D, Ampatzidou H, Francia E, Stanca MA, Bladenopoulos K, Tsaftaris AS (2010) Epigenetic chromatin modifiers in barley: IV. The study of barley polycomb group (PcG) genes during seed development and in response to external ABA. BMC Plant Biol 10:73PubMedCrossRefGoogle Scholar
  57. Kim W, Benhamed M, Servet C, Latrasse D, Zhang W, Delarue M, Zhou DX (2009) Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis. Cell Res 19(7):899–909PubMedCrossRefGoogle Scholar
  58. Kinoshita T, Miura A, Choi YH, Kinoshita Y, Cao XF, Jacobsen SE, Fischer RL, Kakutani T (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303(5657):521–523. doi: 10.1126/science.1089835 PubMedCrossRefGoogle Scholar
  59. Kinoshita Y, Saze H, Kinoshita T, Miura A, Soppe WJ, Koornneef M, Kakutani T (2007) Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J 49(1):38–45PubMedCrossRefGoogle Scholar
  60. Kovalchuk I, Kovalchuk O, Kalck V, Boyko V, Filkowski J, Heinlein M, Hohn B (2003) Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature 423(6941):760–762PubMedCrossRefGoogle Scholar
  61. Kwak KJ, Kim YO, Kang H (2005) Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J Exp Bot 56(421):3007–3016PubMedCrossRefGoogle Scholar
  62. Laubinger S, Zeller G, Henz SR, Buechel S, Sachsenberg T, Wang JW, Ratsch G, Weigel D (2010) Global effects of the small RNA biogenesis machinery on the Arabidopsis thaliana transcriptome. Proc Natl Acad Sci USA 107(41):17466–17473PubMedCrossRefGoogle Scholar
  63. Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52(1):133–146PubMedCrossRefGoogle Scholar
  64. Liu ZQ, Gao J, Dong AW, Shen WH (2009) A truncated Arabidopsis NUCLEOSOME ASSEMBLY PROTEIN 1, AtNAP1;3 T, alters plant growth responses to abscisic acid and salt in the Atnap1;3-2 mutant. Mol Plant 2(4):688–699PubMedCrossRefGoogle Scholar
  65. Long Y, Xia W, Li R, Wang J, Shao M, Feng J, King GJ, Meng J (2011) Epigenetic QTL mapping in Brassica napus. Genetics 189(3):1093–U1585. doi: 10.1534/genetics.111.131615 PubMedCrossRefGoogle Scholar
  66. Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann Bot 94(4):481–495PubMedCrossRefGoogle Scholar
  67. Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38(8):948–952. doi: 10.1038/ng1841 PubMedCrossRefGoogle Scholar
  68. Matzke MA, Matzke AJ, Pruss GJ, Vance VB (2001) RNA-based silencing strategies in plants. Curr Opin Genet Dev 11(2):221–227PubMedCrossRefGoogle Scholar
  69. Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJ (2007) Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10(5):512–519PubMedCrossRefGoogle Scholar
  70. Mirouze M, Lieberman-Lazarovich M, Aversano R, Bucher E, Nicolet J, Reinders J, Paszkowski J (2012) Loss of DNA methylation affects the recombination landscape in Arabidopsis. Proc Natl Acad Sci USA 109(15):5880–5885. doi: 10.1073/pnas.1120841109 PubMedCrossRefGoogle Scholar
  71. Nelissen H, De Groeve S, Fleury D, Neyt P, Bruno L, Bitonti MB, Vandenbussche F, Van der Straeten D, Yamaguchi T, Tsukaya H, Witters E, De Jaeger G, Houben A, Van Lijsebettens M (2010) Plant elongator regulates auxin-related genes during RNA polymerase II transcription elongation. Proc Natl Acad Sci USA 107(4):1678–1683PubMedCrossRefGoogle Scholar
  72. Okitsu CY, Hsieh C-L (2007) DNA methylation dictates histone H3K4 methylation. Mol Cell Biol 27(7):2746–2757. doi: 10.1128/mcb.02291-06 PubMedCrossRefGoogle Scholar
  73. Papaefthimiou D, Likotrafiti E, Kapazoglou A, Bladenopoulos K, Tsaftaris A (2010) Epigenetic chromatin modifiers in barley: III. Isolation and characterization of the barley GNAT-MYST family of histone acetyltransferases and responses to exogenous ABA. Plant Physiol Biochem 48(2–3):98–107PubMedCrossRefGoogle Scholar
  74. Papp I, Mur LA, Dalmadi A, Dulai S, Koncz C (2004) A mutation in the Cap Binding Protein 20 gene confers drought tolerance to Arabidopsis. Plant Mol Biol 55(5):679–686PubMedCrossRefGoogle Scholar
  75. Peng H, Zhang J (2009) Plant genomic DNA methylation in response to stresses: potential applications and challenges in plant breeding. Prog Nat Sci 19(9):1037–1045. doi: 10.1016/j.pnsc.2008.10.014 CrossRefGoogle Scholar
  76. Peng M, Cui Y, Bi YM, Rothstein SJ (2006) AtMBD9: a protein with a methyl-CpG-binding domain regulates flowering time and shoot branching in Arabidopsis. Plant J Cell Mol Biol 46(2):282–296CrossRefGoogle Scholar
  77. Pikaard CS (2006) Cell biology of the Arabidopsis nuclear siRNA pathway for RNA-directed chromatin modification. Cold Spring Harb Symp Quant Biol 71:473–480PubMedCrossRefGoogle Scholar
  78. Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49(4):592–606PubMedCrossRefGoogle Scholar
  79. Rios G, Gagete AP, Castillo J, Berbel A, Franco L, Rodrigo MI (2007) Abscisic acid and desiccation-dependent expression of a novel putative SNF5-type chromatin-remodeling gene in Pisum sativum. Plant Physiol Biochem 45(6–7):427–435PubMedCrossRefGoogle Scholar
  80. Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510PubMedCrossRefGoogle Scholar
  81. Santi DV, Garrett CE, Barr PJ (1983) On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell 33(1):9–10PubMedCrossRefGoogle Scholar
  82. Saze H, Shiraishi A, Miura A, Kakutani T (2008) Control of genic DNA methylation by a jmjC domain – containing protein in Arabidopsis thaliana. Science 319(5862):462–465. doi: 10.1126/science.1150987 PubMedCrossRefGoogle Scholar
  83. Scebba F, De Bastiani M, Bernacchia G, Andreucci A, Galli A, Pitto L (2007) PRMT11: a new Arabidopsis MBD7 protein partner with arginine methyltransferase activity. Plant J 52(2):210–222PubMedCrossRefGoogle Scholar
  84. Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, Weigel D, Lohmann JU (2003) Dissection of floral induction pathways using global expression analysis. Development 130(24):6001–6012PubMedCrossRefGoogle Scholar
  85. Servet C, Benhamed M, Latrasse D, Kim W, Delarue M, Zhou DX (2008) Characterization of a phosphatase 2C protein as an interacting partner of the histone acetyltransferase GCN5 in Arabidopsis. Biochim Biophys Acta 1779(6–7):376–382PubMedGoogle Scholar
  86. Shen J, Xie K, Xiong L (2010) Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses. Mol Genet Genomics 284(6):477–488PubMedCrossRefGoogle Scholar
  87. Singer T, Yordan C, Martienssen RA (2001) Robertson’s Mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene Decrease in DNA Methylation (DDM1). Genes Dev 15(5):591–602PubMedCrossRefGoogle Scholar
  88. Song CP, Galbraith DW (2006) AtSAP18, an orthologue of human SAP18, is involved in the regulation of salt stress and mediates transcriptional repression in Arabidopsis. Plant Mol Biol 60(2):241–257PubMedCrossRefGoogle Scholar
  89. Soppe WJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T, Koornneef M, Peeters AJ (2000) The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6(4):791–802PubMedCrossRefGoogle Scholar
  90. Springer NM, Kaeppler SM (2005) Evolutionary divergence of monocot and dicot methyl-CpG-binding domain proteins. Plant Physiol 138(1):92–104PubMedCrossRefGoogle Scholar
  91. Sridha S, Wu K (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J 46(1):124–133PubMedCrossRefGoogle Scholar
  92. Stangeland B, Rosenhave EM, Winge P, Berg A, Amundsen SS, Karabeg M, Mandal A, Bones AM, Grini PE, Aalen RB (2009) AtMBD8 is involved in control of flowering time in the C24 ecotype of Arabidopsis thaliana. Physiol Plant 136(1):110–126PubMedCrossRefGoogle Scholar
  93. Steward N, Kusano T, Sano H (2000) Expression of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but also with altered DNA methylation status in cold-stressed quiescent cells. Nucleic Acids Res 28(17):3250–3259PubMedCrossRefGoogle Scholar
  94. Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277(40):37741–37746PubMedCrossRefGoogle Scholar
  95. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019PubMedCrossRefGoogle Scholar
  96. Tani E, Polidoros AN, Nianiou-Obeidat I, Tsaftaris AS (2005) DNA methylation patterns are differently affected by planting density in maize inbreds and their hybrids. Maydica 50:19–23Google Scholar
  97. Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13(2):132–138PubMedCrossRefGoogle Scholar
  98. Vernon DM, Bohnert HJ (1992) A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. EMBO J 11(6):2077–2085PubMedGoogle Scholar
  99. Vongs A, Kakutani T, Martienssen RA, Richards EJ (1993) Arabidopsis thaliana DNA methylation mutants. Science (New York, NY) 260(5116):1926–1928CrossRefGoogle Scholar
  100. Wada KC, Takeno K (2010) Stress-induced flowering. Plant Signal Behav 5(8):944–947Google Scholar
  101. Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J, Fu BY, Li ZK (2010) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62(6):1951–1960PubMedCrossRefGoogle Scholar
  102. Xiao W, Custard KD, Brown RC, Lemmon BE, Harada JJ, Goldberg RB, Fischer RL (2006) DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell 18(4):805–814PubMedCrossRefGoogle Scholar
  103. Yaish MW, Peng M, Rothstein SJ (2009) AtMBD9 modulates Arabidopsis development through the dual epigenetic pathways of DNA methylation and histone acetylation. Plant J 59(1):123–135PubMedCrossRefGoogle Scholar
  104. Yaish MW, Colasanti J, Rothstein SJ (2011) The role of epigenetic processes in controlling flowering time in plants exposed to stress. J Exp Bot 62(11):3727–3735PubMedCrossRefGoogle Scholar
  105. Zemach A, Gaspan O, Grafi G (2008) The three methyl-CpG-binding domains of AtMBD7 control its subnuclear localization and mobility. J Biol Chem 283(13):8406–8411PubMedCrossRefGoogle Scholar
  106. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126(6):1189–1201. doi: 10.1016/j.cell.2006.08.003 PubMedCrossRefGoogle Scholar
  107. Zhang Z, Zhang S, Zhang Y, Wang X, Li D, Li Q, Yue M, Zhang YE, Xu Y, Xue Y, Chong K, Bao S (2011) Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. Plant Cell 23(1):396–411. doi: 10.1105/tpc.110.081356 PubMedCrossRefGoogle Scholar
  108. Zhao X, Chai Y, Liu B (2007) Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids. Plant Sci 172(5):930–938. doi: 10.1016/j.plantsci.2007.01.002 CrossRefGoogle Scholar
  109. Zhong L, Wang J-B (2007) The role of DNA hypermethylation in salt resistance of Triticum aestivum L. Wuhan Zhiwuxue Yanjiu 25(1):102–104Google Scholar
  110. Zhou C, Zhang L, Duan J, Miki B, Wu K (2005) HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 17(4):1196–1204PubMedCrossRefGoogle Scholar
  111. Zhu J, Jeong JC, Zhu Y, Sokolchik I, Miyazaki S, Zhu JK, Hasegawa PM, Bohnert HJ, Shi H, Yun DJ, Bressan RA (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci USA 105(12):4945–4950PubMedCrossRefGoogle Scholar
  112. Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39(1):61–69PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  1. 1.Department of Biology, College of ScienceCSultan Qaboos UniversityMuscatOman

Personalised recommendations