Skip to main content

Marker-Assisted Breeding for Stress Resistance in Crop Plants

  • Chapter
  • First Online:
Molecular Stress Physiology of Plants

Abstract

Molecular markers have extensively been used for tagging and mapping of genes and QTLs conferring resistance to biotic and abiotic stresses. These tools have also been used for screening of germplasms, fingerprinting, and marker-assisted breeding in crop systems. This chapter presents an overview on the basic concepts of molecular mapping and marker-assisted breeding and its most widely used applications in crop improvement programs, viz., marker-assisted backcross breeding, gene introgression, gene pyramiding, and marker-assisted selection at an early generation, with emphasis on stress-related traits and examples from several crops. We have also discussed some quantitative aspects of marker-based introgression, backcross breeding, and gene pyramiding programs. We have also added a note on breeding by design and genomic selection as tools for future breeding endeavors aiming at introgression of stress resistance into high-yielding cultivars. Harnessing the full potential of marker-aided breeding for improvement of stress resistance in crop systems will require a multidisciplinary approach and integrated knowledge of the molecular and physiological processes influencing the stress-related traits. Hence, marker-aided breeding for stress resistance in the post-genomic era poses great challenge for molecular breeders to realize the target objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Admassu B, Perovic D, Friedt W, Ordon F (2011) Genetic mapping of the stem rust (Puccinia graminis f. sp. Tritici Eriks. & E. Henn ) resistance gene Sr13 in wheat (Triticum aestivum L.). Theor Appl Genet 122:643–648

    Article  PubMed  CAS  Google Scholar 

  • Agrama HA, Dahleen L, Wentz M, Jin Y, Steffenson B (2004) Molecular mapping of the crown rust resistance gene Rpcl in barley. Phytopathology 94:858–861

    Article  PubMed  CAS  Google Scholar 

  • Ahmadi N, Albar L, Pressoir G, Pinel A, Fargette D, Ghesquiere A (2001) Genetic basis and mapping of the resistance to rice yellow mottle virus. III. Analysis of QTL efficiency in introgressed progenies confirmed the hypothesis of complementary epistasis between two resistance QTLs. Theor Appl Genet 103:1084–1092

    Article  CAS  Google Scholar 

  • Albar L, Lorieux M et al (1998) Genetic basis and mapping of the resistance to rice yellow mottle virus. I. QTLs identification and relationship between resistance and plant morphology. Theor Appl Genet 97:1145–1154

    Article  CAS  Google Scholar 

  • Ali (1999) Mapping quantitative trait loci for root traits related to drought resistance in rice (Oryza sativa L.) using AFLP markers. PhD thesis, Texas Tech University, Texas

    Google Scholar 

  • Allard RW (1999) Principles of plant breeding, 2nd edn. Wiley, New York

    Google Scholar 

  • Anbessa Y, Taran B, Warkentin TD, Tullu A, Vandenberg A (2009) Genetic analyses and conservation of QTL for ascochyta blight resistance in chickpea (Cicer arietinum L.). Theor Appl Genet 119:757–765

    Article  PubMed  CAS  Google Scholar 

  • Anderson IA, Waldron BL, Moreno-Sevilla B, Stack RW, Frohberg RC (1998) Detection of Fusarium head blight resistance QTL in wheat using AFLPs and RFLPs. In: Slinkard AE (ed) Proceedings of the 9th international wheat genetics symposium, vol 1. University of Saskatchewan, Saskatoon, pp 135–137

    Google Scholar 

  • Anuradha J, Balasubramani G (2011) Recent molecular advances to combat abiotic stress tolerance in crop plants. Biotechnol Mol Biol Rev 6:31–58

    Google Scholar 

  • Anuradha C, Gaur PM, Pande S, Gali KK, Ganesh M, Kumar J, Varshney RK (2011) Mapping QTL for resistance to botrytis. Euphytica 182:1–9

    Article  CAS  Google Scholar 

  • Astua Monge G, Minsavage GV, Stall RE, Vallejos CE, Davis MJ, Jones JB (2000) Xv4-vrxv4: a new gene for gene interaction identified between Xanthomonas campestris pv. vesicatoria race T3 and the wild tomato relative Lycopersicon pennellii. Mol Plant Microbe Interact 13:1346–1355

    Article  PubMed  CAS  Google Scholar 

  • Autrique E, Singh RP, Tanksley SD, Sorells ME (1995) Molecular markers for four leaf rust resistance genes introgressed into wheat from wild relatives. Genome 38:75–83

    Article  PubMed  CAS  Google Scholar 

  • Bachlava E, Dewey RE, Burton JW, Cardinal AJ (2009) Mapping candidate genes for oleate biosynthesis and their association with unsaturated fatty acid seed content in soybean. Mol Breed 23:337–347

    Article  CAS  Google Scholar 

  • Bai Y, Huang C, van der Hulst R, Meijer-Dekens F, Bonnema G, Lindhout P (2003) QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes. Mol Plant Microbe Interact 16:169–176

    Article  PubMed  CAS  Google Scholar 

  • Ballvora A, Pierre M, van den Ackerveken G et al (2001) Genetic mapping and functional analysis of the tomato Bs4 locus governing recognition of the Xanthomonas campestris pv. vesicatoria AvrBs4 protein. Mol Plant Microbe Interact 14:629–638

    Article  PubMed  CAS  Google Scholar 

  • Barian HS, Parry N, Barclay IR et al (2006) Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor Appl Genet 112: 1143–1148

    Article  CAS  Google Scholar 

  • Barloy D, Lemoine J, Abelard P, Tanguy AM, Rand R, Jahier J (2007) Marker assisted pyramiding of two cereal cyst nematode resistance genes from Aegilops variabilis in wheat. Mol Breed 20:31–40

    Article  CAS  Google Scholar 

  • Becker H (1993) Pflanzenzu¨ chtung. Verlag Eugen Ulmer, Stuttgart

    Google Scholar 

  • Bergamin Filho A, Kimati H, Amorim L (1995) Manual de fitopatologia: principios e conceitos, 3rd edn. Ceres, Sao Paulo

    Google Scholar 

  • Bernado R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Bonnett DG, Rebetzke GJ, Spielmeyer W (2005) Strategies for efficient implementation of molecular markers in wheat breeding. Mol Breed 15:75–85

    Article  CAS  Google Scholar 

  • Borovkova LG, Steffenson BJ, Jin Y et al (1995) Identification of molecular markers linked to the stem rust resistance gene rpg4 in barley. Phytopathology 85:181–185

    Article  CAS  Google Scholar 

  • Bossolini E, Krattinger SG, Keller B (2006) Development of simple sequence repeat markers specific for the Lr34 resistance region of wheat using sequence information from rice and Aegilops tauschii. Theor Appl Genet 113:1049–1062

    Article  PubMed  CAS  Google Scholar 

  • Bovill WD, Horne M, Herde D, Davis M, Widermuth GB, Sutherland MW (2010) Pyramiding QTL increases seedling resistance to crown rot (Fusarium pseudograminearum) of wheat (Triticum aestivum). Theor Appl Genet 121:127–136

    Article  PubMed  CAS  Google Scholar 

  • Bretting PK, Widrlechner MP (1995) Genetic markers and plant genetic resource management. Plant Breed Rev 13:11–86

    Google Scholar 

  • Brunner S, Keller B, Feuillet C (2000) Molecular mapping of Rph-7.g leaf rust resistance gene in barley (Hordeum vulgare). Theor Appl Genet 101:783–788

    Article  CAS  Google Scholar 

  • Burr B, Burr FA, Matz EC, Romero-Severson J (1992) Pinning down loose ends: mapping telomeres, and factors affecting their length. Plant Cell 4:953–960

    PubMed  CAS  Google Scholar 

  • Bustamam M, Tabien RE, Suwarno A, Abalos MC, Kadir TS, Ona I, Bernardo M, Veracruz CM, Leung H (2002) Asian rice biotechnology network: improving popular cultivars through marker assisted backcrossing by the NARES. In: Proceedings of international rice congress, Beijing

    Google Scholar 

  • Cao W, Huges GR, Ma H, Dong Z (1998) Development of DNA based markers for resistance to Septoria nodorum blotch in durum wheat. In: Slinkard AE (ed) Proceedings of the 9th international wheat genetics symposium, vol 3. Univ Saskatchewan, Saskatoon, pp 95–97

    Google Scholar 

  • Cao X, Zhou J, Gong X, Zhao G, Jia J, Qi X (2012) Identification and validation of a major quantitative trait locus for slow rusting resistance to stripe rust in wheat. J Integr Plant Biol. doi:10.1111/j.1744-7909.2012.01111.x

  • Castro AJ, Capettini F, Corey AE et al (2003) Mapping and pyramiding of qualitative and quantitative resistance to stripe rust in barley. Theor Appl Genet 107:922–930

    Article  PubMed  CAS  Google Scholar 

  • Champoux MC, Wang GL, Sarkarung S, Mackill DJ, O’Toole JE, Huang N, Mc Couch SR (1995) Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90:969–981

    Article  CAS  Google Scholar 

  • Channamallikarjuna V, Sonah H, Prasad M, Rao GJN, Chand S, Upreti HC, Singh NK, Sharma TR (2010) Identification of major quantitative trait loci qSBR11-1 for sheath blight resistance in rice. Mol Breed 25:155–166

    Article  CAS  Google Scholar 

  • Chen S, Lin XH, Xu CG, Zhang Q (2000) Improvement of bacterial blight resistance of ‘Minghui 63’, an elite restorer line of hybrid rice, by molecular marker assisted selection. Crop Sci 40:239–244

    Article  Google Scholar 

  • Chen S, Xu CG, Lin XH, Zhang Q (2001) Improving bacterial blight resistance of ‘6078’, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Plant Breed 120:133–137

    Article  CAS  Google Scholar 

  • Chen H, Fu R, Li X (2011a) Tomato yellow leaf virus (TYLCV): the structure, ecotypes and the resistance germplasm resources in tomato. Afr J Biotechnol 10:13361–13367

    CAS  Google Scholar 

  • Chen S, Liu X, Zeng L, Ouyang D, Yang J, Zhu X (2011b) Genetic analysis and molecular mapping of a novel recessive gene xa34(t) for resistance against Xanthomonas oryzae pv. oryzae. Theor Appl Genet 122:1331–1338

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Chu C, Souza EJ, Guttieri MJ, Chen X, Xu S, Hole D, Zemetra R (2012) Genome wide identification of QTL conferring high temperature adult plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) in wheat. Mol Breed 29:791–800

    Article  CAS  Google Scholar 

  • Chhuneja P, Kumar K, Stirnweis D, Hurni S, Keller B, Dhaliwal HS, Singh K (2012) Identification and mapping of two powdery mildew resistance genes in Triticum boeoticum L. Theor Appl Genet 124:1051–1058

    Article  PubMed  CAS  Google Scholar 

  • Chicaiza O, Khan IA, Zhang X, Brevis JC, Jackson L, Chen X, Dubcovsky J (2006) Registration of five wheat isogenic lines for leaf rust and stripe rust resistance genes. Crop Sci 46:485–487

    Article  Google Scholar 

  • Chu C, Niu Z, Zhong S, Chao S, Friesen TL, Halley S, Elias EM, Dong Y, Faris JD, Xu SS (2011) Identification and molecular mapping of two QTLs with major effects for resistance to Fusarium head blight in wheat. Theor Appl Genet 123:1107–1119

    Article  PubMed  Google Scholar 

  • Chunwongse J, Bunn TB, Crossman C, Jiang J, Tanksley SD (1994) Chromosomal localization and molecular marker tagging of the powdery mildew resistance gene (Lv) in tomato. Theor Appl Genet 89:76–79

    Article  CAS  Google Scholar 

  • Cobos MJ, Winter P, Kharrat M, Cubero JI, Gil J, Millan T, Rubio J (2009) Genetic analysis of agronomic traits in a wide cross of chickpea. Field Crops Res 111:130–136

    Article  Google Scholar 

  • Collard BCY, Mackill MJ (2008) Marker assisted selection: an approach for precision plant breeding in the twenty first century. Philos Trans R Soc B 363:557–572

    Article  CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECR (2005) An introduction to markers, quantitative trait loci (QTL) mapping, and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Courtois B, Mclaren G, Sinha PK, Prasad K, Yadav R, Shen L (2000) Mapping QTLs associated with drought avoidance in upland rice. Mol Breed 6:55–66

    Article  CAS  Google Scholar 

  • Cox TS, Raupp WJ, Gill BS (1994) Leaf rust-resistance genes- Lr41, Lr42 and Lr43 transferred from Triticum tauschii to common wheat. Crop Sci 34:339–343

    Article  Google Scholar 

  • Cuc LM, Huyen LTN, Hien PTM, Hang VTT, Dam NQ, Mui PT, Quangi VD, Ismail AM, Ham LH (2012) Application of marker assisted backcrossing to introgress the submergence tolerance QTL SUB1 into the Vietnam elite rice variety-AS996. Am J Plant Sci 3:528–536

    Article  CAS  Google Scholar 

  • Das A, Soubam D, Singh PK, Thakur S, Singh NK, Sharma TR (2012) A novel blast resistance gene, Pi54rh cloned from wild species of rice. Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Funct Integr Genomics. doi:10.1007/s10142-012-0284-1

  • Datta K, Baisakh N, Thet KM, Tu J, Datta S (2002) Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theor Appl Genet 106:1–8

    PubMed  CAS  Google Scholar 

  • de Giovanni C, Dell’Orco P, Bruno A, Ciccarese F, Lotti C, Ricciardi L (2004) Identification of PCR-based markers (RAPD, AFLP) linked to a novel powdery mildew resistance gene (ol-2) in tomato. Plant Sci 166:41–48

    Article  CAS  Google Scholar 

  • Dekkers JCM, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3:22–32

    Article  PubMed  CAS  Google Scholar 

  • Doveri S, Lee D, Maheswaran M, Powell W (2008) Molecular markers: history, features and applications. In: Kole C, Abbott AG (eds) Principles and practices of plant genomics. Science publisher USA, Enfield

    Google Scholar 

  • Duan CX, Su N, Cheng ZJ, Lei CL, Wang JL, Zhai HQ, Wan JM (2010) QTL analysis for the resistance to small brown planthopper (Laodelphax striatellus Fallen) in rice using backcross inbred lines. Plant Breed 129:63–67

    Article  CAS  Google Scholar 

  • Dudley JW (1993) Molecular markers in plant improvement: manipulation of genes affecting quantitative traits. Crop Sci 33:660–668

    Article  CAS  Google Scholar 

  • Dwivedi SL, Stalker HT, Blair MW, Bertoli DJ, Nielen S, Ortiz R (2008) Enhancing crop gene pools with beneficial traits using wild relatives. Plant Breed Rev 30:179–230

    Article  CAS  Google Scholar 

  • Eastwood RF, Lagudah ES, Appels R (1994) A direct search for DNA sequences tightly linked to cereal cyst nematode resistance genes in Triticum tauschii. Genome 37:311–319

    Article  PubMed  CAS  Google Scholar 

  • Eathington SR, Dudley JW, Rufener GK (1997) Usefulness of marker-QTL associations in early generation selection. Crop Sci 37:1686–1693

    Article  Google Scholar 

  • Echart CL, Neto JFB, Cavali SS (2006) Aluminium tolerance in Barley: molecular mapping analysis. R Bras Agrociencia Pelotas 12:15–20

    Google Scholar 

  • Edwards MD, Stuber CW, Wendel JF (1987) Molecular-marker facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116:113–125

    PubMed  CAS  Google Scholar 

  • Eglinton JK, Coventry SJ, Chalmers K (2006) Breeding outcomes from molecular genetics.-Breeding for success: diversity in action. In: Proceedings of the 13th Australasian plant breeding conference, 1 Christchurch

    Google Scholar 

  • Eibach R, Zyprian E, Welter L, Topfer R (2007) The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis 46:120–124

    CAS  Google Scholar 

  • Emebiri L, Michael P, Moody D (2009) Enhanced tolerance to boron toxicity in two-rowed barley by marker-assisted introgression of favourable alleles derived from Sahara 3771. Plant Soil 314:77–85

    Article  CAS  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield associated QTL. Genetics 141:1147–1162

    PubMed  CAS  Google Scholar 

  • Eskes A (1980) Bases Geneticas da resistencia horizontal a pathogenos em plantas. Ciencia e Cultura 32:1464–1472

    Google Scholar 

  • Everson E, Schaller CW (1955) The genetics of yield differences associated with awn barbing in the barley hybrid (‘Lion’ x ‘Atlas 10’) x ‘Atlas’. Agron J 47:276–280

    Article  Google Scholar 

  • Fahima T, Chague V, Sun G, Korol A, Ronin Y, Roder M, Grama A, Neva E (1997) Identification and potential use of PCR markers flanking the Triticum dicoccoides-derived stripe rust resistance gene Yr15 in wheat. In: Proceedings of wheat international 5th congress plant molecular biology, Singapore

    Google Scholar 

  • Falke K, Susic Z, Wilde P, Wortmann H, Mohring J, Piepho HP, Geiger H, Miedaner T (2009) Testcross performance of rye introgression lines developed by marker assisted backcrossing using an Iranian accession as donor. Theor Appl Genet 118:1225–1238

    Article  PubMed  CAS  Google Scholar 

  • Feng V, Zuo LL, Zhang ZY, Lin RM, Cao YY, Xu SC (2011) Quantitative trait loci for temperature sensitive resistance to Puccinia striiformis f. sp. tritici in wheat cultivar Flinor. Euphytica 178:321–329

    Article  Google Scholar 

  • Ferreira ME, Satagopan JM, Yandell BS, Williams PH, Osborn TC (1995a) Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet 90:727–732

    Article  Google Scholar 

  • Ferreira ME, Williams PH, Osborn TC (1995b) Mapping of a locus controlling resistance to Albugo candida in Brassica napus using molecular markers. Phytopathology 85:218–220

    Article  CAS  Google Scholar 

  • Feuillet C, Messmer M, Schachermayr G, KeIler B (1995) Genetic and physical characterization of the Lr1 leaf rust locus in wheat (Triticum aestivum L.). Mol Gen Genet 248:553–562

    Article  PubMed  CAS  Google Scholar 

  • Figdore SS, Ferreira ME, Slocum MK, Williams PH (1993) Association of RFLP markers with trait loci affecting club root resistance and morphological characters in Brassica oleracea L. Euphytica 63:33–44

    Article  Google Scholar 

  • Flor HH (1971) Current status of the gene for gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Foolad MR (2007) Genome mapping and molecular breeding of tomato. Int J Plant Genomics. doi:10.1155/2007/64358

  • Foolad MR, Jones RA (1993) Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor Appl Genet 87:184–192

    Article  CAS  Google Scholar 

  • Foolad M, Zhang L, Khan A, Nino-Liu D, Lin G (2002) Identification of QTLs for early blight (Alternaria solani) resistance in tomato using backcross populations of a Lycopersicon esculentum x L. hirsutum cross. Theor Appl Genet 104:945–958

    Article  PubMed  CAS  Google Scholar 

  • Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall’Aglio E, Vale G (2005) Marker assisted selection in crop plants. Plant Cell Tissue Org Cult 82:317–342

    Article  CAS  Google Scholar 

  • Frisch M, Bohn M, Melchinger AE (1999a) Comparison of selection strategies for marker assisted backcrossing of a gene. Crop Sci 39:1295–1301

    Article  Google Scholar 

  • Frisch M, Bohn M, Melchinger AE (1999b) Minimum sample size and optimal positioning of flanking markers in marker-assisted backcrossing for transfer of a target gene. Crop Sci 39:967–975

    Article  Google Scholar 

  • Fujita D, Doi K, Yoshimura A, Yasui H (2010) A major QTL for resistance to green rice leafhopper (Nephotettix cincticeps Uhler) derived from African rice (Oryza glaberrima Steud.). Breed Sci 60:336–341

    Article  Google Scholar 

  • Ganal MW, Broun P, Tanksley SD (1992) Genetic mapping of tandemly repeated telomeric DNA sequences in tomato Lycopersicon esculentum. Genomics 14:444–448

    Article  PubMed  CAS  Google Scholar 

  • Ganapathy KN, Byre GM, Venkatesha SC et al (2009) Identification of AFLP markers linked sterility mosaic disease in pigeonpea Cajanus cajan (L.) Millsp. Int J Integr Biol 7:145–149

    CAS  Google Scholar 

  • Geiger HH, Heun M (1989) Genetics of quantitative resistance to fungal diseases. Annu Rev Phytopathol 27:317–341

    Article  Google Scholar 

  • Gibson S, Somerville C (1993) Isolating plant genes. Trends Biotechnol 11:306–313

    Article  PubMed  CAS  Google Scholar 

  • Gnanesh BN, Bohra A, Sharma M, Byregowda M, Pandey S, Wesley V, Saxena RK, Saxena KB, Kavi Kishor PB, Varshney RK (2011) Genetic mapping and quantitative trait locus analysis of resistance to sterility mosaic disease in pigeonpea [Cajanus cajan (L.) Millsp.]. Field Crops Res 123:53–61

    Article  Google Scholar 

  • Gowda M, Roy Barman S, Chatto BB (2006) Molecular mapping of a novel blast resistance gene Pi38 in rice using SSLP & AFLP markers. Plant Breed 125:596–599

    Article  CAS  Google Scholar 

  • Gowda SJM, Radhika P, Kadoo NY, Mhase LB, Gupta VS (2009) Molecular mapping of wilt resistance genes in chickpea. Mol Breed 24:177–183

    Article  CAS  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their application in wheat breeding: a review. Plant Breed 118:369–390

    Article  CAS  Google Scholar 

  • Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2:245

    Article  CAS  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Hanson PM, Green SK, Kuo G (2006) Ty-2, a gene on chromosome 11 conditioning gemini virus resistance in tomato. Rep Tomato Genet Coop 56:17–18

    Google Scholar 

  • Hao Y, Chen Z, Wang Y, Bland D, Buck J, Guedira GB, Johnson J (2011) Characterization of a major QTL for adult plant resistance to stripe rust in US soft red winter wheat. Theor Appl Genet 123:1401–1411

    Article  PubMed  Google Scholar 

  • Hash CT, Thakur RP, Rao VP, Bhasker Raj AG (2006) Evidence for enhanced resistance to diverse isolates of pearl through gene pyramiding millet downy mildew. Int Sorghum Millets Newsl 47:134–138

    Google Scholar 

  • Hayes PM, Corey AE, Mundt C, Toojinda T, Vivar H (2003) Registration of ‘Tango’ barley. Crop Sci 43:729–731

    Article  Google Scholar 

  • Helguera M, Vanzetti L, Soria M, Khan IA, Kolmer J, Dubcovsky J (2005) PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines. Crop Sci 45:728–734

    Article  CAS  Google Scholar 

  • Hiebert C, Thomas J, McCallum B (2005) Locating the broad-spectrum wheat leaf rust resistance gene Lr52 (LrW) to chromosome 5B by a new cytogenetic method. Theor Appl Genet 110:1453–1457

    Article  PubMed  CAS  Google Scholar 

  • Hiebert CW, Thomas JB, Somers DJ, McCallum BD, Fox SL (2007) Microsatellite mapping of adult-plant leaf rust resistance gene Lr22a in wheat. Theor Appl Genet 115:877–884

    Article  PubMed  CAS  Google Scholar 

  • Himabindu K, Suneetha K, Sama VSAK, Bentur JS (2010) A new rice gall midge resistance gene in the breeding line CR57-MR1523, mapping with flanking markers and development of NILs. Euphytica 174:179–187

    Article  CAS  Google Scholar 

  • Hittalmani S, Mew T, Foolad MR, Huang N (1995a) Identification of blast resistance gene Pi-2(t) in a segregating population of rice. Theor Appl Genet 91:9–14

    Article  CAS  Google Scholar 

  • Hittalmani S, Mew T, Huang N, Khush GS (1995b) Disease resistance breeding for blast and bacterial leaf blight in rice. In: Fragile lives in fragile ecosystems. Proceedings of international rice research conference, IRRI, Manila

    Google Scholar 

  • Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N (2000) Fine mapping and DNA marker assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100:1121–1128

    Article  CAS  Google Scholar 

  • Holland JB (2004) Implementation of molecular markers for quantitative traits in breeding programs- Challenges and opportunities. In: Fischer T (ed) New directions for a diverse planet. Proceedings of the 4th international crop science congress, The Regional Institute Ltd., Gosford, NSW, Australia (www.cropscience.org.au)

    Google Scholar 

  • Hospital F (2005) Selection in backcross programmes. Philos Trans R Soc B 360:1503–1511

    Article  CAS  Google Scholar 

  • Hospital F, Charcosset A (1997) Marker assisted introgression of quantitative trait loci. Genetics 147:1469–1485

    PubMed  CAS  Google Scholar 

  • Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Bennett J, Khush GS (1997) Pyramiding of bacterial blight resistance genes via DNA marker aided selection in rice. Theor Appl Genet 95:313–320

    Article  CAS  Google Scholar 

  • Islam MR, Salam MA, Hassan L, Collard BCY, Singh RK, Gregorio GB (2011) QTL mapping for salinity tolerance at seedling stage in rice. Emir J Food Agric 23:137–146

    Google Scholar 

  • Jahoor A (1998) Marker assisted breeding in cereals, specially with respect to synteny among loci for mildew resistance. In: Gupta PK (ed) Genetics and biotechnology for crop improvement. Rastogi Publications, Meerut

    Google Scholar 

  • Jairin J, Sansen K, Wongboon W, Kothcharerk J (2010) Detection of a brown planthopper resistance gene bph4 at the same chromosomal position of Bph3 using two different genetic backgrounds of rice. Breed Sci 60:71–75

    Article  CAS  Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177

    Article  PubMed  CAS  Google Scholar 

  • Jansen JP (1996) Aphid resistance in composites. International application published under the patent cooperation treaty (PCT) No. WO 97/46080

    Google Scholar 

  • Jena KK (2010) The species of the genus Oryza and transfer of useful genes from wild species into cultivated rice, O. sativa. Breed Sci 60:518–523

    Article  Google Scholar 

  • Ji YF, Scott JW (2006) Ty-3, a begomo virus resistance locus linked to Ty-1 on chromosome 6 of tomato. Rep Tomato Genet Coop 56:22–25

    Google Scholar 

  • Jia J, Devos KM, Chao S, Miller TE, Reader SM, Gale MD (1996) RFLP based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92:559–565

    Article  CAS  Google Scholar 

  • Jiang GH, Xu CG, Tu JM, Li XH, He YQ, Zhang QF (2004) Pyramiding of insect and disease resistance genes into an elite indica, cytoplasm male sterile restorer line of rice, ‘Minghui 63’. Plant Breed 123:112–116

    Article  CAS  Google Scholar 

  • Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334

    Article  CAS  Google Scholar 

  • Kanjoo V, Jearakongman S, Punyawaew K, Siangliw JL, Siangliw M, Vanavichit A, Toojinda T (2011) Co-location of quantitative trait loci for drought and salinity tolerance in rice. Thai J Genet 4:126–138

    Google Scholar 

  • Katiyar S, Verulkar S, Chandel G, Zhang Y, Huang B, Bennet J (2001) Genetic analysis and pyramiding of two gall midge resistance genes (Gm 2 and Gm 6 t) in rice (Oryzae sativa L.). Euphytica 122:327–334

    Article  CAS  Google Scholar 

  • Khairallah MM, Bohn M, Jiang C (1998) Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed 117:309–318

    Article  Google Scholar 

  • Khan AA, Bergstrom GC, Nelson JC, Sorrells ME (2000) Identification of RFLP markers for resistance to wheat spindle streak mosaic bymovirus (WSSMV) disease. Genome 43:477–482

    Article  PubMed  CAS  Google Scholar 

  • Kiyosawa S (1982) Genetics and epidemiological modelling of breakdown of plant disease resistance. Annu Rev Phytopathol 20:93–117

    Article  Google Scholar 

  • Kloppers FJ, Pretorius ZA (1997) Effects of combinations amongst genes Lr13, Lr34 and Lr37 on components of resistance in wheat to leaf rust. Plant Pathol 46:737–750

    Article  Google Scholar 

  • Koebner RMD, Summers RW (2003) 21st century wheat breeding: plot selection or plate detection? Trends Biotechnol 21:59–63

    Article  PubMed  CAS  Google Scholar 

  • Kole C (2011) Wild crop relatives: genomic and breeding resources. Springer, Heidelberg/Dordrecht/London/New York

    Book  Google Scholar 

  • Kole C, Gupta PK (2004) Genome mapping and map based cloning. In: Jain HK, Kharkwal MC (eds) Plant breeding: Mendelian to molecular approaches. Narosa Publishing House, New Delhi

    Google Scholar 

  • Kole C, Kole P, Vogelzang R, Osborn TC (1997) Genetic linkage map of a Brassica rapa recombinant inbred population. J Hered 88:553–557

    Article  CAS  Google Scholar 

  • Kole C, Thormann CE, Karlsson BH, Palta JP, Gaffney P, Yandell B, Osborn TC (2002a) Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and B. napus. Mol Breed 9:201–210

    Article  CAS  Google Scholar 

  • Kole C, Williams PH, Rimmer SR, Osborn TC (2002b) Linkage mapping of genes controlling resistance to white rust (Albugo candida) in Brassica rapa (syn. campestris) and comparative mapping to B. napus and Arabidopsis thaliana. Genome 45:22–27

    Article  PubMed  CAS  Google Scholar 

  • Kole C, Teutonico R, Mengistu A, Williams PH, Osborn TC (1996) Molecular mapping of a locus controlling resistance to Albugo candida in Brassica rapa. Phytopathology 86:367–369

    Article  CAS  Google Scholar 

  • Kole C, Quijada P, Michaels AD, Amasino RM, Osborn TC (2001) Evidence for homology of flowering-time genes VFR2 from Brassica rapa and FLC from Arabidopsis thaliana. Theor Appl Genet 102:425–430

    Article  CAS  Google Scholar 

  • Koseki M, Kitazawa N, Yonebayashi S, Maehara Y, Wang ZX, Minobe Y (2010) Identification and fine mapping of a major quantitative trait locus originating from wild rice, controlling cold tolerance at the seedling stage. Mol Genet Genomics 284:45–54

    Article  PubMed  CAS  Google Scholar 

  • Kotresh H, Fakrudin B, Punnuri SM, Rajkumar BK, Thudi M, Paramesh H, Lohithaswa H, Kuruvinashetti MS (2006) Identification of two RAPD markers genetically linked to a recessive allele of a Fusarium wilt resistance gene in pigeonpea (Cajanus cajan L. Millsp.). Euphytica 149:113–120

    Article  CAS  Google Scholar 

  • Kottapalli KR, Narasu ML, Jena KK (2010) Effective strategy for pyramiding three bacterial blight resistance genes into fine grain rice cultivar, Samba Mahsuri, using sequence tagged site markers. Biotechnol Lett 32:989–996

    Article  PubMed  CAS  Google Scholar 

  • Kuchel H, Fox R, Rainheimer J, Mosionek L, Willey N, Bariana H, Jefferies S (2007) The successful application of a marker assisted wheat breeding strategy. Mol Breed 20:295–308

    Article  Google Scholar 

  • Kumar PL, Latha TKS, Kulkarni NK, Raghavendra N, Saxena KB, Waliyar F, Rangaswamy KT, Muniyappa V, Doriswamy S, Jones AT (2005) Broad-based resistance to pigeonpea sterility mosaic disease in wild relatives of pigeonpea (Cajanus: Phaseoleae). Ann Appl Biol 146:371–379

    Article  Google Scholar 

  • Kumar J, Choudhury AK, Solanki RK, Pratap A (2011) Towards MAS in pulses: a review. Plant Breed 130:297–313

    Article  CAS  Google Scholar 

  • Kumaravadivel N, Uma MD, Saravanan PA, Suresh H (2006) Molecular marker-assisted selection and pyramiding genes for gall midge resistance in rice suitable for Tamil Nadu Region. In: ABSTRACTS- 2nd international rice congress, IRRI, Manila

    Google Scholar 

  • Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio BA, Shomura A, Shimizu T, Lin SY et al (1994) A 300 kilobase interval genetic map of rice including 883 expressed sequence. Nature Genet 8:365–372

    Article  PubMed  CAS  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Dally MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lang NT, Tao NV, Buu BC (2011) Marker assisted backcrossing (MAB) for rice submergence tolerance in Mekong Delta. Omonrice 18:11–21

    Google Scholar 

  • Langella R, Ercolano M, Monti L, Frusciante L, Barone A (2004) Molecular marker assisted transfer of resistance to TSWV in Tomato elite lines. J Hort Sci Biotechnol 79:806–810

    CAS  Google Scholar 

  • Li ZB, Pinson SRM, Marchetti MA, Stansel JW, Park WD (1995) Characterization of quantitative trait loci (QTLs) in cultivated rice to field resistance to sheath blight (Rhizoctonia solani). Theor Appl Genet 91:382–388

    CAS  Google Scholar 

  • Li GQ, Li ZF, Yang WY et al (2006a) Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor Appl Genet 112:1434–1440

    Article  PubMed  CAS  Google Scholar 

  • Li ZF, Zheng TC, He ZH et al (2006b) Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line Zhou 8425B. Theor Appl Genet 112:1098–1103

    Article  PubMed  CAS  Google Scholar 

  • Li TH, Li YX, Li ZC, Zhang HL, Qi YW, Wang T (2008) Simple sequence repeat analysis of genetic diversity in primary core collection of peach (Prunus persica). J Integr Plant Biol 50:102–110

    Article  PubMed  CAS  Google Scholar 

  • Li T, Zhang Z, Hu Y, Duan X, Xin Z (2011) Identification and molecular mapping of a resistance gene to powdery mildew from the synthetic wheat line M53. J Appl Genet 52:137–143

    Article  PubMed  CAS  Google Scholar 

  • Li HJ, Li XH, Xiao JH, Wing RA, Wang SP (2012) Ortholog alleles at Xa3/Xa26 locus confer conserved race-specific resistance against Xanthomonas oryzae in rice. Mol Plant 5:281–290

    Article  PubMed  CAS  Google Scholar 

  • Lilley JM, Ludlow MM, McCouch SR, O’Toole JC (1996) Locating QTL for osmotic adjustment and dehydration tolerance in rice. J Exp Bot 47:1427–1436

    Article  CAS  Google Scholar 

  • Lincoln S, Dally M, Lander ES (1992b) Mapping genes controlling quantitative traits with MAPMAKER/QTL 1.1. Whitehead Institute Technical Reports (2nd edn), Cambridge, MA

    Google Scholar 

  • Lincoln SE, Dally MJ, Lander ES (1992a) Constructing genetic linkage maps with MAPMAKER/ EXP 3.0. Whitehead Institute Technical Reports (3rd edn), Cambridge, MA

    Google Scholar 

  • Liu BH, Knapp SJ (1992) G-Mendel:- a program for Mendelian segregation and linkage analysis of individual or multiple progeny populations using log-likelihood ratios. J Hered 81:407

    Google Scholar 

  • Liu J, Liu D, Tao W, Li W, Wang S, Chen P, Cheng S, Gao D (2000) Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breed 119:21–24

    Article  CAS  Google Scholar 

  • Liu G, Lu G, Zeng L, Wang GL (2002) Two broad spectrum blast resistance genes, Pi9(t) and Pi2(t) are physically linked on rice chromosome 6. Mol Genet Genomics 267:472–480

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Nie H, Wang S et al (2005) Mapping a resistance gene in wheat cultivar Yangfu 9311 to yellow mosaic virus, using microsatellite markers. Theor Appl Genet 111:651–657

    Article  PubMed  CAS  Google Scholar 

  • Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink JL (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123

    Article  Google Scholar 

  • Lorieux M (2012) MapDisto: fast and efficient computation of genetic linkage maps. Mol Breed. doi:10.1007/s11032-012-9706-y

  • Ma ZQ, Gill BS, Sorrells ME, Tanksley SD (1993) RFLP markers linked to two Hessian fly resistance genes in wheat (Triticum aestivum L.) from Triticum tauschii (Coss;) Schal. Theor Appl Genet 85:750–754

    Article  CAS  Google Scholar 

  • Ma ZQ, Sorrells ME, Tanksley SD (1994) RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3 and Pm4 in wheat. Genome 37:871–875

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Kong Z, Fu B, Li N, Zhang L, Jia H, Ma Z (2011) Identification and mapping of a new powdery mildew resistance gene on chromosome 6D of common wheat. Theor Appl Genet 123:1099–1106

    Article  PubMed  CAS  Google Scholar 

  • Maccaferri M, Ratti C, Autonell RC, Vallega V, Demontis A, Stefanelli S, Tuberosa R, Sanguineti MC (2011) Resistance to Soil-borne cereal mosaic virus in durum wheat is controlled by a major QTL on chromosome arm 2BS and minor loci. Theor Appl Genet 123:527–544

    Article  PubMed  CAS  Google Scholar 

  • Mackill DJ, Ni J (2000) Molecular mapping and marker assisted selection for major gene traits in rice. In: Khush GS, Brar DS, Hardy B (eds) Proceedings of the 4th international rice genetics symposium. IRRI, Los Banos

    Google Scholar 

  • Mallikarjuna N, Senapathy S, Jadhav DR, Saxena K, Sharma HC, Upadhyaya HD, Rathore A, Varshney R (2011) Progress in the utilization of Cajanus platycarpus (Benth.) Maesen in pigeonpea improvement. Plant Breed 130:507–514

    Article  CAS  Google Scholar 

  • Mamadov JA, Biyashev RM, Griffery CA, Saghaimaroof MA (2003) Molecular mapping of leaf rust resistance gene Rph-5 in barley. Crop Sci 43:388–393

    Article  Google Scholar 

  • Manly KF (1995) New functions in MAP MANAGER, a macro computer program for genomic mapping. In: Proceedings of plant genome III, San Diego, CA

    Google Scholar 

  • Mc Couch SR, Abenes ML, Angeles R, Khush GS, Tanksley SD (1992) Molecular tagging of a recessive gene Xa-5 for resistance to bacterial blight of rice. Rice Genet Newsl 8:143–145

    Google Scholar 

  • Melchinger AE (1990) Use of molecular markers in breeding for oligogenic disease resistance. Plant Breed 104:1–19

    Article  Google Scholar 

  • Mesbah LA, Kneppers TJA, Takken FLW, Laurent P, Hille J, Nijkamp HJJ (1999) Genetic and physical analysis of a YAC contig spanning the fungal disease resistance locus Asc of tomato (Lycopersicon esculentum). Mol Gen Genet 261:50–57

    Article  PubMed  CAS  Google Scholar 

  • Mew TV, Parco A, Hittalmani S et al (1994) A 300 kb interval rice genetic map including 883 expressed sequences. Nat Genet 8:365–372

    Article  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Miedaner T, Wilde F, Steiner B, Buerstmayr H, Korzun V, Ebmeyer E (2006) Stacking quantitative trait loci (QTL) for Fusarium head blight resistance from non-adapted sources in an European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. Theor Appl Genet 112:562–569

    Article  PubMed  CAS  Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Leath S (2006) Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet 113:1497–1504

    Article  PubMed  CAS  Google Scholar 

  • Mishra RR, Sahu AR, Rath SC, Mishra SP, Panigrahi J (2012) Cyto-morphological and molecular characterization of Cajanus cajan x C. scarabaeoides F1 Hybrid. Nucleus: doi:10.1007/s13237-012-0050-8

  • Miyamoto M, Ando I, Rybka K, Kodama O, Kawasaki S (1996) High resolution mapping of the indica-derived rice blast resistance genes. 1. Pi-b. Mol Plant Microbe Interact 9:6–13

    Article  CAS  Google Scholar 

  • Mohan M, Nair S, Bentur JS, Prasad Rao U, Bennet J (1994) RFLP and RAPD mapping of the rice Gm-2 gene that confers resistance to biotype 1 of gall midge (Orseolia oryzae). Theor Appl Genet 87:782–788

    Article  CAS  Google Scholar 

  • Mohan M, Sathyanarayanan PV, Kumar A, Srivastava MN, Nair S (1997) Molecular mapping of a resistance specific PCR based marker linked to a gall midge resistance gene (Gm4t) in rice. Theor Appl Genet 95:777–782

    Article  CAS  Google Scholar 

  • Mohler V, Singrun C (2004) General considerations: marker assisted selection. In: Lorz H, wenzel G (eds) Biotechnology in agriculture and forestry, vol 55, Molecular marker systems. Springer, Berlin

    Google Scholar 

  • Mukherjee AK, Mohapatra T, Varshney A, Sharma R, Sharma RP (2001) Molecular mapping of a locus controlling resistance to Albugo candida in Indian mustard. Plant Breed 120:481–487

    Article  Google Scholar 

  • Myint KKM, Fujita D, Matsumura M, Sonoda T, Yoshimura A, Hideshi Yasui H (2012) Mapping and pyramiding of two major genes for resistance to the brown planthopper (Nilaparvata lugens [Sta°l]) in the rice cultivar ADR52. Theor Appl Genet 124:495–504

    Article  PubMed  CAS  Google Scholar 

  • Nair S, Kumar A, Srivastava MN, Mohan M (1996) PCR-based DNA markers linked to a gall midge resistance gene, Gm4t has potential for marker aided selection in rice. Theor Appl Genet 92:660–665

    Article  CAS  Google Scholar 

  • Nanda A, Mohanty SK, Panda RS, Behera L, Prakash A, Sahu SC (2010) Flanking microsatellite markers for breeding varieties against Asian rice gallmidge. Trop Plant Biol 3:219–226

    Article  CAS  Google Scholar 

  • Naqvi NJ, Bonman JM, Mackill DJ, Nelson RJ, Chattoo BJ (1995) Identification of RAPD markers linked to a major blast resistance gene in rice. Mol Breed 1:341–348

    Article  CAS  Google Scholar 

  • Neeraja CN, Rodriguez RM, Pamplona A, Heuer S, Collard BCY, Septiningsih EM, Vergara G, Sanchez D, Xu K, Ismail AM, Mackill DJ (2007) A marker assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115:767–776

    Article  PubMed  CAS  Google Scholar 

  • Nejad GM, Arzani A, Rezai AM, Singh RK, Gregorio GB (2008) Assessment of rice genotypes for salt tolerance using microsatellite markers associated with the saltol QTL. Afr J Biotechnol 7:730–736

    Google Scholar 

  • Nelson JC, Sorrells ME, Van Deynze AE, Lu LH, Atkinson MD, Bernard M, Leroy P, Faris J, Anderson JA (1995) Molecular mapping of wheat major genes and rearrangements in homoeologous groups 4, 5 and 7. Genetics 141:721–731

    PubMed  CAS  Google Scholar 

  • Ogbonnaya FC, Subrahmanyam NC, Moullet O, De Majnik J, Eagles HA, Brown JS, Kollmorgen JF, Eastwood RF, Lagudah ES, Appels R (2001) Diagnostic DNA markers for cereal cyst nematode resistance in bread wheat. Aust J Agric Res 52:1367–1374

    Article  CAS  Google Scholar 

  • Okada Y, Kashiwazaki S, Kanatani R, Arai S, Ito K (2003) Effects of barley yellow mosaic disease resistant gene rym1 on the infection by strains of Barley yellow mosaic virus and Barley mild mosaic virus. Theor Appl Genet 106:181–189

    PubMed  CAS  Google Scholar 

  • Okada Y, Kanatani R, Arai S, Ito K (2004) Interaction between Barley yellow mosaic disease resistance gene rym1 and rym5, in the response to BaYMV strains. Breed Sci 54:319–325

    Article  CAS  Google Scholar 

  • Olivera PD, Millet E, Anikster Y, Steffenson BJ (2008) Genetics of resistance to wheat leaf rust, stem rust, and powdery mildew in Aegilops sharonensis. Phytopathology 98:353–358

    Article  PubMed  CAS  Google Scholar 

  • Panigrahi J (2011) Molecular mapping and map based cloning of genes in plants. In: Thangadurai D (ed) Plant biotechnology and transgenics. Bentham Science Publishers, Oak Park

    Google Scholar 

  • Panigrahi J, Kumar DR, Mishra M, Mishra RP, Jena P (2007) Genomic relationships in the genus Cajanus as revealed by seed protein (albumin and globulin) polymorphisms. Plant Biotechnol Rep 1:109–116

    Article  Google Scholar 

  • Panigrahi J, Patnaik A, Kole P, Kole C (2009) Addition of RFLP markers to the genetic linkage map of Brassica rapa L. (syn. campestris) and detection of new QTLs for Albugo candida race-7( AC-7). Z. Naturoforsch 64C:882–890

    Google Scholar 

  • Parlevliet JE (1977) Variation for partial resistance in a cultivar of rye, Secale cereale, to brown rust. Puccinia recondita sp. secalis. Cereal Rusts Bullet 5:13–16

    Google Scholar 

  • Parlevliet JE (1989) Identification and evaluation of quantitative resistance. In: Leonard KJ, Fry FE (eds) Plant disease epidemiology: genetics, resistance and management, vol 2. McGraw-Hill Publishers, New York

    Google Scholar 

  • Paterson AH (1996) Physical mapping and map-based cloning: bridging the gap between DNA markers and genes. In: Paterson AH (ed) Genome mapping in plants. Academic/RG Landes, New York/Austin

    Google Scholar 

  • Paterson AH (1998) Molecular dissection of complex traits. CRC Press, Boca Raton

    Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Paterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete RFLP linkage map. Nature 335:721–726

    Article  PubMed  CAS  Google Scholar 

  • Peleman JD, vander Voort JR (2003a) The challenges in marker assisted breeding. In: Van Hintum TJL, Lebeda A, Pink D, Schutt JW (eds) Eucarpia leafy vegetables 2003

    Google Scholar 

  • Peleman JD, vander Voort JR (2003b) Breeding by design. Trends Plant Sci 8:330–334

    Article  PubMed  CAS  Google Scholar 

  • Peleman JD, Wye C, Zethof J, Sorensen AP, Verbakel H et al (2005) Quantitative trait locus (QTL) isogenic recombinant analysis: a method for high-resolution mapping of QTL within a single population. Genetics 171:1341–1352

    Article  PubMed  CAS  Google Scholar 

  • Pena L (2004) Transgenic plants: methods and protocols. Humana Press, Totowa

    Google Scholar 

  • Peng JH, Fahima T, Roder MS, Li YC, Dahn A, Grama A, Ronin YJ, Korol AB, Nevo E (1999) Microsatellite tagging of the stripe rust resistance gene YrH52 derived from wild emmer wheat Triticum dicoccoides and suggestive negative crossover interference on chromosome IB. Theor Appl Genet 98:862–872

    Article  CAS  Google Scholar 

  • Peters JL, Cnudde F, Gerats T (2003) Forward genetics and map based cloning approaches. Trends Plant Sci 8:484–491

    Article  PubMed  CAS  Google Scholar 

  • Porter DR, Burd JD, Shufran KA, Webster JA (2000) Efficacy of pyramiding greenbug (Homoptera: Aphididae) resistance genes in wheat. J Econ Entomol 93(4):1315–1318

    Article  PubMed  CAS  Google Scholar 

  • Prabhu KV, Somens DJ, Rakow G, Gugel RK (1998) Molecular markers linked to white rust resistance in mustard Brassica juncea. Theor Appl Genet 97:865–870

    Article  CAS  Google Scholar 

  • Prasad MS, Kanthi BA, Balachandran SM, Seshumadhav M, Mohan KM, Viraktmah BC (2009) Molecular mapping of rice blast resistance gene Pi-1(t) in the elite indica variety Samba Mahsuri. World J Microbiol Biotechnol 25:1765–1769

    Article  CAS  Google Scholar 

  • Procunier JD, Knox RE, Bernier AM, Gray MA, Howes NK (1997) DNA markers linked to a T10 loose smut resistance gene in wheat (Triticum aestivum L.). Genome 40:176–179

    Article  PubMed  CAS  Google Scholar 

  • Qiu JW, Schurch AC, Yahiaoui N, Dong LL, Fan HJ, Zhang ZJ, Keller B, Ling HQ (2007) Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat. Theor Appl Genet 115:159–168

    Article  PubMed  CAS  Google Scholar 

  • Qiu Y, Guo J, Jing S, Zhu L, He G (2010) High-resolution mapping of the brown planthopper resistance gene Bph6 in rice and characterizing its resistance in the 9311 and Nipponbare near isogenic backgrounds. Theor Appl Genet 12:1601–1611

    Article  Google Scholar 

  • Qiu Y, Guo J, Jing S, Zhu L, He G (2012) Development and characterization of japonica rice lines carrying the brown planthopper resistance genes BPH12 and BPH6. Theor Appl Genet 124:485–494

    Article  PubMed  CAS  Google Scholar 

  • Quesada-Ocampo M, Hausbeck MK (2010) Resistance in tomato and wild relatives to crown and root rot caused by (Phytophthora capsici. L.). Phytopathology 100:619–627

    Article  PubMed  CAS  Google Scholar 

  • Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    Article  PubMed  CAS  Google Scholar 

  • Rao IM, Venkataratnam N, Sheldrake AR, Rao IM (1981) Field screening of pigeonpea for tolerance to soil salinity. Int Chickpea Pigeonpea Newsl 1:23

    Google Scholar 

  • Rao Y, Dong G, Zeng D, Hu J, Zeng L, Gao Z, Zhang G, Guo L, Qian Q (2010) Genetic analysis of leaf folder resistance in rice. J Genet Genomics 37:325–331

    Article  PubMed  CAS  Google Scholar 

  • Rasmussoin M (1933) A contribution to the theory of quantitative character inheritance. Hereditas 18:245–261

    Article  Google Scholar 

  • Rehman AU (2009) Characterization and molecular mapping of drought tolerance in kabuli chickpea (Cicer arietinum L.). PhD thesis, University of Saskatchewan, Saskatoon, Canada

    Google Scholar 

  • Ren RS, Wang MN, Chen XM, Zhang ZJ (2012) Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theor Appl Genet. doi:10.1007/s00122-012-1877-8

  • Ribaut JM, Betran J (1999) Single large scale marker assisted selection (SLS-MAS). Mol Breed 5:531–541

    Article  Google Scholar 

  • Ribaut JM, Hoisington D (1998) Marker assisted selection: new tools and strategies. Trends Plant Sci 3:236–239

    Article  Google Scholar 

  • Ribaut JM, Jiang C, Hoisington D (2002) Simulation experiments on efficiencies of gene introgression by backcrossing. Crop Sci 42:557–565

    Article  Google Scholar 

  • Riedel C, Habekuss A, Schliephake E, Niks R, Broer I, Ordon F (2011) Pyramiding of Ryd2 and Ryd3 conferring tolerance to a German isolate of barley yellow dwarf virus-PAV (BYDV-PAV-ASL-1) leads to quantitative resistance against this isolate. Theor Appl Genet 123:69–76

    Article  PubMed  CAS  Google Scholar 

  • Robert VJM, West MAL, Inai S, Caines A, Arntzen L, Smith JK, Clair DA (2001) Marker assisted introgression of black mold resistance QTL alleles from wild Lycopersicon cheesmanii to cultivated tomato (L. esculentum) and evaluation of QTL phenotypic effects. Mol Breed 8:217–233

    Article  CAS  Google Scholar 

  • Ronald PC, Albano B, Tabien R, Abenes L, Wu KK, McCouch SR, Tanksley SD (1992) Genetic and physical analysis of the rice bacterial blight disease resistance locus Xa21. Mol Gen Genet 236:113–120

    PubMed  CAS  Google Scholar 

  • Rong JK, Millet E, Manisterski J, Feldman M (1998) A powdery mildew resistance gene from wild emmer transferred into common wheat and tagged by molecular markers. In: Slinkard AE (ed) Proceedings of the 9th international wheat genetics symposium, vol 3. University of Saskatchewan, Saskatoon, pp 148–150

    Google Scholar 

  • Sacco F, Suarez EY, Naranjo T (1998) Mapping of the leaf rust resistance gene Lr3 on chromosome 6B of Sinvalocho MA wheat. Genome 41:686–690

    CAS  Google Scholar 

  • Saghai Maroof MA, Zhang Q, Biyashev RM (1994) Molecular marker analyses of powdery mildew resistance in barley. Theor Appl Genet 88:733–740

    Article  Google Scholar 

  • Saghai Maroof MA, Jeong SC, Gunduz I, Tucker DM, Buss GR, Tolin SA (2008) Pyramiding of soybean mosaic virus resistance genes by marker assisted selection. Crop Sci 48:517–526

    Article  CAS  Google Scholar 

  • Salina E, Dobrovolskaya O, Efremova T, Leonova I, Roder MS (2003) Microsatellite monitoring of recombination around the Vrn-B1 locus of wheat during early backcross breeding. Plant Breed 122:116–119

    Article  CAS  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  PubMed  CAS  Google Scholar 

  • Sanchez AC, Brar DS, Huang N, Li Z, Khush GS (2000) Sequence tagged site marker-assisted selection for three bacterial blight resistance genes in rice. Crop Sci 40:792–797

    Article  CAS  Google Scholar 

  • Sardesai N, Kumar A, Rajyshri KR, Nair S, Mohan M (2002) Identification and mapping of an AFLP marker linked to Gm-7, a gall midge resistance gene and its conversion to a SCAR marker for its utility in MAS in rice. Theor Appl Genet 105:691–698

    Article  PubMed  CAS  Google Scholar 

  • Sarfatti M, Katan J, Fluhr R, Zamir D (1989) An RFLP marker in tomato linked to the Fusarium oxysporum resistance gene 1 2 . Theor Appl Genet 78:755–759

    Article  CAS  Google Scholar 

  • Sax K (1923) The association of size differences with seed coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560

    PubMed  CAS  Google Scholar 

  • Saxena KB, Singh L, Reddy MV, Singh U, Leteef SS, Sharma SB et al (1990) Intra-species variation in Atylosia scarabaeoides (L.) Benth., a wild relative of pigeonpea (Cajanus cajan (L.) Millsp.). Euphytica 49:185–191

    Google Scholar 

  • Schmolke M, Mohler V, Hartl L, Zeller FJ, Hsam SLK (2012) A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticummonococcum). Mol Breed 29:449–456

    Article  CAS  Google Scholar 

  • Schon CC, Lee M, Melchinger AE, Guthrie WD, Woodman WL (1993) Mapping and characterization of QTL affecting resistance against second generation European corn borer in maize with the aid of RFLPs. Heredity 70:648–659

    Article  CAS  Google Scholar 

  • Semagn K, Bjornstad A, Ndjiondjop MN (2006) An overview of molecular marker methods for plant. Afr J Biotechnol 25:2540–2569

    Google Scholar 

  • Septiningsih EM, Sanchez DL, Singh N, Sendon PMD, Pamplona AM, Heuer S, Mackill DJ (2012) Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru. Theor Appl Genet 124:867–874

    Article  PubMed  Google Scholar 

  • Serraj R, Mc Nally KL, Slamet-laedin I, Kohli A, Haefele SM, Atlin G, Kumar A (2011) Drought resistance improvement in rice: an integrated genetic and resource management strategy. Plant Prod Sci 14:1–14

    Article  Google Scholar 

  • Servin B, Martin OC, Mezard M, Hospital F (2004) Towards a theory of marker assisted gene pyramiding. Genetics 168:513–523

    Article  PubMed  CAS  Google Scholar 

  • Seyfarth RC, Feuillet C, Keller B (1998) Development and characterization of molecular markers for the adult leaf rust resistance genes Lr13 and Lr35 in wheat. In: Slinkard AE (ed) Proceedings of the 9th international wheat genetics symposium, vol 3. University of Saskatchewan, Saskatoon, pp 154–155

    Google Scholar 

  • Shan X, Blake TK, Talbert LE (1999) Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor Appl Genet 98:1072–1078

    Article  CAS  Google Scholar 

  • Shanti ML, George MLC, Cruz CMV, Bernardo MA, Nelson RJ, Leung H, Reddy JN, Sridhar R (2001) Identification of resistance genes effective against rice bacterial blight pathogen in eastern India. Plant Dis 85:506–512

    Article  CAS  Google Scholar 

  • Sharma PN, Torii A, Takumi S, Mori N, Nakamura C (2004) Marker-assisted pyramiding of brown planthopper (Nilaparvata lugens StÃ¥l) resistance genes Bph1 and Bph2 on rice chromosome 12. Hereditas 140:61–69

    Article  PubMed  Google Scholar 

  • Sharp PJ, Johnston S, Brown R et al (2001) Validation of molecular markers for wheat breeding. Aust J Agric Res 52:1357–1366

    Article  CAS  Google Scholar 

  • Shi A, Chen P, Li D, Zheng C, Zhang B, Hou A (2009) Pyramiding multiple genes for resistance to soybean mosaic virus in soybean using molecular markers. Mol Breed 23:113–124

    Article  CAS  Google Scholar 

  • Sholihin HDM (2002) Molecular mapping of drought resistance in mungbean (Vigna radiate): 2. QTL linked to drought resistance. J Bioteknol Pertanian 7:55–61

    Google Scholar 

  • Simmonds NW (1993) Introgression and incorporation: strategies for the use of crop genetic resources. Biol Rev 68:539–562

    Article  Google Scholar 

  • Simms EL, Rausher MD (1992) Quantitative genetics. In: Fritz RS, Simms EL (eds) Ecology and evolution of plant resistance. University of Chicago Press, Chicago

    Google Scholar 

  • Singh S, Sidhu JS, Huang N, Vikal Y, Li Z, Brar DS, Dhaliwal HS, Khush GS (2001) Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor Appl Genet 102:1011–1015

    Article  CAS  Google Scholar 

  • Singh R, Sharma P, Varshney RK, Sharma SK, Singh NK (2008) Chickpea improvement: role of wild species and genetic markers. Biotechnol Genet Eng Rev 25:267–314

    Article  PubMed  CAS  Google Scholar 

  • Somers D, Thomas J, Depauw R, Fox S, Humphreys G, Fedak G (2005) Assembling complex genotypes to resist Fusarium in wheat (Triticum aestivum L.). Theor Appl Genet 111:1623–1631

    Article  PubMed  CAS  Google Scholar 

  • Somta P, Kaga A, Tomooka N, Isemura T, Vaughan DA, Srinives P (2008) Mapping of quantitative trait loci for a new source of resistance to bruchids in the wild species Vigna nepalensis Tateishi & Maxted (Vigna subgenus Ceratotropis). Theor Appl Genet 117:621–628

    Article  PubMed  CAS  Google Scholar 

  • Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111:731–735

    Article  PubMed  CAS  Google Scholar 

  • Starn P (1993) Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J 3:739–744

    Article  Google Scholar 

  • Steele K, Price A, Shashidhar H, Witcombe J (2006) Marker assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112:208–221

    Article  PubMed  CAS  Google Scholar 

  • Stoskopf NC, Tomes DT, Christie BR (1993) Plant breeding: theory and practice. Westview Press Inc., San Francisco/Oxford

    Google Scholar 

  • Stuber CW (1992) Biochemical and molecular markers in plant breeding. Plant Breed Rev 9:37–61

    CAS  Google Scholar 

  • Subbarao GV, Johansen C, Jana MK, Rao JVDKK (1991) Comparative salinity responses among pigeonpea genotypes and their wild relatives. Crop Sci 31:415–418

    Article  Google Scholar 

  • Sui XX, Wang MN, Chen XM (2009) Molecular mapping of a stripe rust resistance gene in spring wheat cultivar ZAK. Phytopathology 99:1209–1215

    Article  PubMed  CAS  Google Scholar 

  • Suiter KA, Wendel JF, Case JS (1983) Linkage-I: a Pascal computer program for the detection and analysis of genetic linkage. J Hered 74:203–204

    PubMed  CAS  Google Scholar 

  • Sun GL, Fahima T, Korol AB, Turpeinien T, Grama A, Ronin Y, Nevo E (1999) Identification of molecular markers linked to Yr 15 stripe resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 95:622–628

    Article  Google Scholar 

  • Sun L, Chen X, Wang S, Wang L, Liu C, Mei L, Xu N (2008) Heredity analysis and gene mapping of bruchid resistance of a mung bean cultivar V2709. Agric Sci China 7:672–677

    Article  Google Scholar 

  • Sun X, Bai G, Carver BF (2009) Molecular markers for wheat leaf rust resistance gene Lr41. Mol Breed 23:311–321

    Article  CAS  Google Scholar 

  • Sun W, Xu X, Zhu H, Liu A, Liu L, Li J, Hua X (2010) Comparative transcriptomic profiling of a salt tolerant wild tomato species and a salt sensitive tomato cultivar. Plant Cell Physiol 51:997–1006

    Article  PubMed  CAS  Google Scholar 

  • Sutton WS (1903) The chromosomes in heredity. Biol Bull 4:231–251

    Article  Google Scholar 

  • Talbert LE, Bruckner E, Smith LY, Sears R, Martin TJ (1996) Development of PCR markers linked to resistance to wheat streak mosaic virus in wheat. Theor Appl Genet 93:463–467

    Article  CAS  Google Scholar 

  • Tanksley SD (1983) Molecular markers in plant breeding. Plant Mol Biol Rep 1:3–8

    Article  CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7:257–263

    Article  CAS  Google Scholar 

  • Teutonico RA, Yandell BS, Satagopan JM, Ferreira ME, Palta JP, Osborn TC (1995) Genetic analysis and mapping of genes controlling freezing tolerance in oil seed Brassica. Mol Breed 1:329–339

    Article  CAS  Google Scholar 

  • Thoday JM (1961) Location of polygenes. Nature 191:368–370

    Article  Google Scholar 

  • Tomooka N, Lairungreang C, Nakeeraks P, Egawa Y, Thavarasook C (1992) Development of bruchid resistant mungbean line using wild mungbeam germplasm in Thailand. Plant Breed 109:60–66

    Article  Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough PB (1997) Heterogeneous inbred family analysis: an approach for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet 95:1005–1011

    Article  CAS  Google Scholar 

  • Uauy C, Brevis JC, Chen X et al (2005) High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet 112:97–105

    Article  PubMed  CAS  Google Scholar 

  • van der Biezen EA, Glagotskaya T, Overduin B, Nijkamp HJJ, Hille J (1995) Inheritance and genetic mapping of resistance to Alternaria alternata f. sp. lycopersici in Lycopersicon pennellii. Mol Gen Genet 247:453–461

    Article  PubMed  Google Scholar 

  • vander Plank JE (1963) Plant diseases: epidemics and control. Academic, New York

    Google Scholar 

  • vander Plank JE (1968) Disease resistance in plants. Academic, New York

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Penmetsa RV et al (2010) Pigeonpea genomics initiative (PGI): an international effort to improve crop productivity of pigeonpea (Cajanus cajan L.). Mol Breed 26:393–408

    Article  PubMed  Google Scholar 

  • Visscher PM, Haley CS, Thompson R (1996) Marker assisted introgression in backcross breeding programs. Genetics 144:1923–1932

    PubMed  CAS  Google Scholar 

  • Walsh JA, Sharpe AG, Jenner CE, Lydiate DJ (1999) Characterization of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TURBO 1. Theor Appl Genet 99:1149–1154

    Article  CAS  Google Scholar 

  • Wang GL, Mackill DJ, Bonman JM, McCouch SR, Champoux MC, Nelson RJ (1994) RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136:1421–1434

    PubMed  CAS  Google Scholar 

  • Wang J, Chapman SC, Bonnett DG, Rebetzke GJ, Crouch J (2007) Applications of population genetic theory and simulation models to efficiently pyramid multiple genes via marker assisted selection. Crop Sci 47:582–588

    Article  Google Scholar 

  • Wang C, Zhang Y, Han D et al (2008) SSR and STS markers for wheat stripe rust resistance gene Yr26. Euphytica 159:359–366

    Article  CAS  Google Scholar 

  • Wang B, Jiang L, Zhang Y, Zhang W, Wang M, Cheng X, Liu X, Zhai H, Wan J (2011) QTL mapping for resistance to strip virus disease in rice. Plant Breed 130:321–327

    Article  CAS  Google Scholar 

  • Weaver R, Helms C, Mishra SK, Donis-Keller H (1992) Software for analysis and manipulation of genetic linkage data. Am J Hum Genet 50:1267–1274

    PubMed  CAS  Google Scholar 

  • Werner K, Friedt W, Ordon F (2005) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Mol Breed 16:45–55

    Article  CAS  Google Scholar 

  • Wilde F, Schon C, Korzun V, Ebmeyer E, Schmolke M, Harlt L, Miedaner T (2008) Marker-based introduction of three quantitative trait loci conferring resistance to Fusarium head blight into an independent elite winter wheat breeding population. Theor Appl Genet 117:29–35

    Article  PubMed  CAS  Google Scholar 

  • Willcox MC, Khairallah MM, Bergvinson D, Crossa J, Deutsch JA, Edmeades GO, Gonzalez-De-Leon D, Jiang C, Jewell DC, Mihm JA, Williams WP, Hoisington D (2002) Selection for resistance to southwestern corn borer using marker assisted and conventional backcrossing. Crop Sci 42:1516–1528

    Article  Google Scholar 

  • Williams KJ, Fisher JM, Langridge P (1994) Identification of RFLP markers linked to the cereal cyst nematode resistant gene (ere) in wheat. Theor Appl Genet 89:927–930

    Article  CAS  Google Scholar 

  • Wu S, Pumphrey M, Bai G (2009) Molecular mapping of stem rust resistance gene Sr40 in wheat. Crop Sci 49:1681–1686

    Article  CAS  Google Scholar 

  • Wye C, vander Voort RJ, Peleman J (2000) Reverse QTL mapping (RQM), an efficient approach for high resolution mapping of QTL. In: Plant and animal genome VII conference VII, San Diego

    Google Scholar 

  • Xu Y (1997) Quantitative trait loci: separating, pyramiding, and cloning. Plant Breed Rev 15:85–139

    CAS  Google Scholar 

  • Xu Y (2003) Developing marker assisted selection strategies for breeding hybrid rice. Plant Breed Rev 23:73–174

    CAS  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker assisted selection in plant breeding: from publication to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Xu K, Mackill DJ (1996) A major locus for submergence tolerance mapped on rice chromosome 9. Mol Breed 2:219–224

    Article  CAS  Google Scholar 

  • Xu YB, Ishi T, Mc Couch SR (2003) Marker assisted evaluation of germplasm resources for plant breeding. In: Mew TW, Brar DS, Peng S, Dawe D, Hardy B (eds) Rice science-innovations and impact for livelihood. IRRI, Manila

    Google Scholar 

  • Xu Q, Yuan X, Yu H, Wang Y, Tang S, Wei X (2011a) Mapping quantitative trait loci for sheath blight resistance in rice using double haploid population. Plant Breed 130:404–406

    Article  CAS  Google Scholar 

  • Xu W, Li C, Hu L, Wang H, Dong H, Zhang J, Zan X (2011b) Identification and molecular mapping of PmHNK54: a novel powdery mildew resistance gene in common wheat. Plant Breed 130:603–607

    Article  CAS  Google Scholar 

  • Xue S, Xu F, Tang M, Zhou Y, Li G, An X, Lin F, Xu H, Jia H, Zhang L et al (2011) Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet 123:1055–1063

    Article  PubMed  Google Scholar 

  • Xue F, Ji W, Wang C, Zhang H, Yang B (2012) High density mapping and marker development for the powdery mildew resistance gene PmAS846 derived from wild emmer wheat (Triticum turgidum var. dicoccoides). Theor Appl Genet 124:1549–1560

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Li RB, Li YR, Huang FK, Chen YZ, Huang SS, Huang LF, Liu C, Ma ZF, Huang DH et al (2012) Genetic mapping of bph20(t) and bph21(t) loci conferring brown planthopper resistance to Nilaparvata lugens Stal in rice (Oryza sativa L.). Euphytica 183:161–171

    Article  CAS  Google Scholar 

  • Ye C, Argayoso MA, Redona ED, Sierra SN, Laza MA, Dilla CJ, Mo Y, Thomson MJ, Chin J, Delavina CB, Diaz GQ, Hernandez JE (2012) Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breed 131:33–41

    Article  CAS  Google Scholar 

  • Yin Y, Zuo S, Wang H, Chen Z, Ma Y, Zhang Y, Gu S, Pan X (2008) Pyramiding effects of three quantitative trait loci for resistance to sheath blight using near isogenic lines of rice. Chin J Rice Sci 22:340–346

    CAS  Google Scholar 

  • Yoshimura S, Yoshimura A, Saito A, Kishimoto N, Kawase M, Yano M, Nakagahra N, Ogawa T, Iwata N (1992) RFLP analysis of introgressed segments in three near isogenic lines of rice for bacterial blight resistance genes, Xa-1, Xa-3 and Xa-4. Jpn J Genet 67:29–37

    Article  CAS  Google Scholar 

  • Yoshimura S, Yoshimura A, Iwata N, McCouch SR, Abenes ML, Baraoidan MR, Mew TW, Nelson RJ (1995a) Tagging and combining bacterial blight resistant genes in rice using RAPD and RFLP markers. Mol Breed 1:375–387

    Article  CAS  Google Scholar 

  • Yoshimura S, Yoshimura A, Nelson RJ, Mew TW, Iwata N (1995b) Tagging Xa-1, the bacterial blight resistance gene in rice, by using RAPD markers. Breed Sci 45:81–85

    CAS  Google Scholar 

  • Young ND, Tanksley SD (1989a) RFLP analysis of the size of chromosomal segments retained around the Tm-2a locus of tomato during back cross breeding. Theor Appl Genet 77:353–359

    Article  CAS  Google Scholar 

  • Young ND, Tanksley SD (1989b) Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet 77:95–101

    Article  Google Scholar 

  • Young ND, Kumar L, Menancio-Hautea D, Danesh D, Talekar NS, Shanmugasundaraum S, Kim DH (1992) RFLP mapping of a major bruchid resistance gene in mungbean (Vigna radiata L. Wilczek). Theor Appl Genet 84:839–844

    Article  CAS  Google Scholar 

  • Young ND, Danesh D, Menancio-Hautea D, Kumar L (1993) Mapping oligogenic resistance to powdery mildew in mungbean with RFLPs. Theor Appl Genet 87:243–249

    Article  CAS  Google Scholar 

  • Yu ZH (1991) Molecular mapping of rice (Oryza sativa L.) genes via linkage to restriction fragment polymorphism (RFLP) markers. PhD thesis, Cornell University, Ithaca

    Google Scholar 

  • Yu ZH, Mackill DJ, Bonman JM, Tanksley SD (1991) Tagging genes for blast resistance in rice via linkage to RFLP markers. Theor Appl Genet 81:471–476

    Article  Google Scholar 

  • Yu YG, Saghai-Maroof MA, Buss GR, Maughan PI, Tolin SA (1994) RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance. Phytopathology 84:60–64

    Article  CAS  Google Scholar 

  • Yu F, Lydiate DJ, Rimmer SR (2008) Identification and mapping of third black leg resistance locus in Brassica napus derived from B. rapa subsp. sylvestris. Genome 51:64–72

    Article  PubMed  CAS  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhang J, Li X, Jiang G, Xu Y, He Y (2006) Pyramiding of Xa7 and Xa21 for the improvement of disease resistance to bacterial blight in hybrid rice. Plant Breed 125:600–605

    Article  CAS  Google Scholar 

  • Zhang NW, Pelgrom K, Niks RE, Visser RGF, Jeuken MJW (2009a) Three combined quantitative trait loci from non host Lactuca saligna are sufficient to provide complete resistance of lettuce against Bremia Lactucae. Mol Plant Microbe Interact 22:1160–1168

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Wang J, Pan J (2009b) Identification and molecular mapping of the rice bacterial blight resistance gene allelic to Xa-7 from an elite restorer line Zhenhui 084. Eur J Plant Physiol 125:235–244

    CAS  Google Scholar 

  • Zhang YX, Jiang L, Liu LL, Wang BX, Shen YY, Wang Q, Cheng XN, Wan JM (2010) Quantitative trait loci associated with resistance to rice stripe virus and small brown planthopper infestation in rice. Crop Sci 50:1854–1862

    Article  CAS  Google Scholar 

  • Zhang YX, Wang Q, Jiang L, Liu LL, Wang BX, Shen YY, Cheng XN, Wan JM (2011) Fine mapping of qSTV11KAS, a major QTL for rice stripe disease resistance. Theor Appl Genet 122:1591–1604

    Article  PubMed  CAS  Google Scholar 

  • Zhang YX, Wang Q, Jiang L, Wang BX, Liu LL, Shen YY, Cheng XN, Jian-Min Wan JM (2012) Detection and fine mapping of two quantitative trait loci for partial resistance to stripe virus in rice (Oryza sativa L.). Mol Breed. doi:10.1007/s11032-012-9725-8

  • Zhao F, Cai Z, Hu T, Yao H, Wang L, Dong N, Wang B, Ru Z, Zhai W (2010) Genetic analysis and molecular mapping of a novel gene conferring resistance to rice stripe virus. Plant Mol Biol Rep 28:512–518

    Article  Google Scholar 

  • Zheng HG, Babu RC, Pathan MS, Ali L, Huang N, Courtois B, Nguyen HT (2000) Quantitative trait loci for root-penetration ability and root thickness in rice: comparison of genetic backgrounds. Genome 1:53–61

    Article  Google Scholar 

  • Zhou L, Zeng Y, Zheng W, Tang B, Yang S, Zhang H, Li J, Li Z (2010) Fine mapping a QTL qCTB7 for cold tolerance at the booting stage on rice chromosome 7 using a near-isogenic line. Theor Appl Genet 121:895–905

    Article  PubMed  CAS  Google Scholar 

  • Zhou XL, Wang WL, Wang LL, Hou DY, Jing JX, Wang Y, Xu ZQ, Yao Q, Yin JL, Ma DF (2011) Genetics and molecular mapping of genes for high-temperature resistance to stripe rust in wheat cultivar Xiaoyan 54. Theor Appl Genet 123:431–438

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Walker DR, Boerma HR, Parrot WA (2006) Fine mapping of a major insect resistance QTL in soybean and its interaction with minor resistance QTLs. Crop Sci 46:1094–1099

    Article  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

  • Zhu X, Wang H, Guo J, Wu Z, Cao A, Bie T, Nie M, You FM, Cheng Z, Xiao J et al (2012) Mapping and validation of quantitative trait loci associated with wheat yellow mosaic bymovirus resistance in bread wheat. Theor Appl Genet 124:177–188

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jogeswar Panigrahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Panigrahi, J., Mishra, R.R., Sahu, A.R., Rath, S.C., Kole, C.R. (2013). Marker-Assisted Breeding for Stress Resistance in Crop Plants. In: Rout, G., Das, A. (eds) Molecular Stress Physiology of Plants. Springer, India. https://doi.org/10.1007/978-81-322-0807-5_16

Download citation

Publish with us

Policies and ethics