Skip to main content

Abiotic and Biotic Stress Tolerance in Plants

  • Chapter
  • First Online:
Molecular Stress Physiology of Plants

Abstract

Environmental stresses play crucial roles in the productivity, survival and reproductive biology of plants as well as crops. Plants are subjected to many forms of environmental stress, which can be included into two broad areas: abiotic (physical environment) and biotic (e.g. pathogen, herbivore). However, plants evolve different mechanisms of tolerance to cope with the stress effects. These mechanisms comprise physiological, biochemical, molecular and genetic changes. This chapter represents a general overview of the major mechanisms developed by plants to tolerate environmental stresses, both abiotic (drought, high temperature, chilling and freezing, UV-B radiation, salinity and heavy metals) and biotic (herbivory, pathogen and parasite and allelopathy). Since the length and complexity of the topic is so wide, the effects of the different stresses on plant physiology and biochemistry, as well as the synergies between types of stresses, are beyond the scope of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuqamar S, Luo H, Laluk K, Mickelbart MV, Mengiste T (2009) Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. Plant J 58:347–360

    Article  PubMed  CAS  Google Scholar 

  • Añon S, Fernandez JA, Franco JA, Torrecillas A, Alarcón JJ, Sánchez-Blanco MJ (2004) Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants. Sci Hortic 101:333–342

    Article  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and relations in C3 cereals: what to breed for? Ann Bot 89:925–940

    Article  PubMed  Google Scholar 

  • Artlip TS, Wisniewski ME (2001) Induction of proteins in response to biotic and abiotic stresses. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker, New York

    Google Scholar 

  • Assmann SM, Snyder JA, Lee YRJ (2000) ABA-deficient (aba1) and ABA-insensitive (abi1-1, abi2-1) mutants of Arabidopsis have a wild-type stomatal response to humidity. Plant Cell Environ 23:387–395

    Article  CAS  Google Scholar 

  • Awada S, Campbell WF, Dudley M, Jurinak JJ (1995) Interactive effects of sodium chloride, sodium sulphate, calcium sulphate, and calcium chloride on snapbean growth, photosynthesis and ion uptake. J Plant Nutr 18:889–900

    Article  CAS  Google Scholar 

  • Baerson SR, Sánchez-Moreiras A, Pedrol-Bonjoch N, Schulz M, Kagan IA, Agarwal AK, Reigosa MJ, Duke SO (2005) Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3 H)-one. J Biol Chem 280:21867–21881

    Article  PubMed  CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders – strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Barkla BJ, Pantoja O (1996) Physiology of ion transport across the tonoplast of higher plants. Annu Rev Plant Physiol Mol Biol 47:159–184

    Article  CAS  Google Scholar 

  • Barták M, Nijs I, Impens I (1998) The susceptibility of PS II of Lolium perenne to a sudden fall in air temperature – response of plants grown in elevated CO2 and/or increased air temperature. Environ Exp Bot 39:85–95

    Article  Google Scholar 

  • Beggs CJ, Schneider-Ziebert U, Wellmann E (1986) UV-B radiation and adaptive mechanisms in plants. In: Worrest RC, Caldwell MM (eds) Stratopheric ozone reduction, solar ultraviolet radiation and plant life, vol 8, NATO ASI series. Springer, Berlin

    Google Scholar 

  • Belsky AJ, Carson WP, Jensen CL, Fox GA (1993) Over compensation by plants: herbivore optimization or red herring? Evol Ecol 7:109–121

    Article  Google Scholar 

  • Benedict C, Skinner JS, Meng R, Chang Y, Bhalerao R, Huner NP, Finn CE, Chen TH, Hurry V (2006) The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ 29:1259–1272

    Article  PubMed  CAS  Google Scholar 

  • Bertrand M, Guary JC, Schoefs B (2001) How plants adapt their physiology to an excess of metals. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker, New York, pp 751–762

    Google Scholar 

  • Best A, White A, Boots M (2008) Maintenance of host variation in tolerance to pathogens and parasites. PNAS 105:20786–20791

    Article  PubMed  CAS  Google Scholar 

  • Blouin M, Zuily-Fodil Y, Pham-Thi AT, Laffray D, Reversat G, Pando A, Tondoh J, Lavelle P (2005) Belowground organism activities affect plant aboveground phenotype, inducing plant tolerance to parasites. Ecol Lett 8:202–208

    Article  Google Scholar 

  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367–1376

    Article  PubMed  CAS  Google Scholar 

  • Boots M, Bowers G (1999) Three mechanisms of host resistance to microparasites – avoidance, recovery and tolerance – show different evolutionary dynamics. J Theor Biol 201:13–23

    Article  PubMed  CAS  Google Scholar 

  • Breman JW (2006) Leaf-tissue freeze-tolerance mechanisms in bahiagrass (Paspalum notatum Flüegge). University of Florida, Florida, pp 1–23

    Google Scholar 

  • Brown BA, Jenkins GI (2008) UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol 146:576–588

    Article  PubMed  CAS  Google Scholar 

  • Burke TJ, Callis J, Vierstra RD (1988) Characterisation of a polyubiquitin gene from Arabidopsis thaliana. Mol Gen Genet 213:435–443

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, Marschner H (1988) Enhanced superoxide radical production in roots of zinc-deficient plants. J Exp Bot 39:1449–1460

    Article  Google Scholar 

  • Cambrollé J, Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME (2008) Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the esturine sediment. Mar Pollut Bull 56:2037–2042

    Article  PubMed  CAS  Google Scholar 

  • Catinot J, Buchala A, Abou-Mansour E, Métraux JP (2008) Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett 582:473–478

    Article  PubMed  CAS  Google Scholar 

  • Chapin FS III, McNaughton SJ (1989) Lack of compensatory growth under phosphorus deficiency in grazing-adapted grasses from the Serengeti plains. Oecologia 79:551–557

    Article  Google Scholar 

  • Chen ZH, Zhou MX, Mewman IA, Mendham NJ, Zhang GP, Shabala S (2007) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34:150–162

    Article  CAS  Google Scholar 

  • Choi YE, Harada E, Wada M, Tsuboi H, Morita Y, Kusano T, Sano H (2001) Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213:45–50

    Article  PubMed  CAS  Google Scholar 

  • Clarke DD (1986) Tolerance of parasites and disease in plants and its significance in host-parasite interactions. In: Ingram DS, Williams PH (eds) Advances in plant pathology, vol 5. Academic, London, pp 161–198

    Google Scholar 

  • Clarke SM, Mur LA, Wood JE, Scott IM (2004) Salicylic acid dependent signalling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38:432–447

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JJ (1999) Tolerance to toxic metals by a gene family of phytochelatin syntheses from plants and yeast. EMBO J 18:3325–3333

    Article  PubMed  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plantarum 97:795–803

    Article  Google Scholar 

  • Cobbett CS, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92:4114–4119

    Article  PubMed  CAS  Google Scholar 

  • Dajic Z (2006) Salt stress. In: Madhava Rao KV, Raghavendra AS, Janardhan Reddy K (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 41–100 (http://www.link.springer.com/book/10.1007/1-4020-4225-6/page/1)

    Chapter  Google Scholar 

  • Day TA, Vogelmann TC (1995) Alterations in photosynthesis and pigment distributions in pea leaves following UV-B exposure. Physiol Plant 94:433–440

    Article  CAS  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Desikan R, Mackerness SAH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  PubMed  CAS  Google Scholar 

  • Devi SR, Pellissier F, Prasad MNV (1997) Allelochemicals. In: Prasad MNV (ed) Plant ecophysiology. Wiley, New York, pp 253–303

    Google Scholar 

  • Domingues-Solis JR, Gutierrez-Alcala G, Romero LC, Gotor C (2001) The cytosolic O-acetyl-serine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance. J Biol Chem 276:9297–9302

    Article  Google Scholar 

  • Dong J, Mao WH, Zhang GP, Wu FB, Cai Y (2007) Root excretion and plant tolerance to cadmium toxicity – a review. Plant Soil Environ 53:193–200

    CAS  Google Scholar 

  • Einhellig FA (2004) Mode of allelochemical action of phenolic compounds. In: Macias FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Allelopathy: chemistry and mode of action of allelochemicals. CRC Press, Boca Raton, pp 217–238

    Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  PubMed  CAS  Google Scholar 

  • Feder ME, Hoffman GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  PubMed  CAS  Google Scholar 

  • Fischer NH (1986) The function of mono and sesquiterpenes as plant germination and growth regulators. In: Putnam AR, Tang CS (eds) The science of allelopathy. Wiley, New York, pp 203–218

    Google Scholar 

  • Fornoni J, Núñez-Farfán J (2000) Evolutionary ecology of Datura stramonium: genetic variation and cost of tolerance to defoliation. Evolution 54:789–797

    PubMed  CAS  Google Scholar 

  • Fornoni J, Núñez-Farfán J, Valverde PL (2003) Evolutionary ecology of tolerance to herbivory: advances and perspectives. Comments Theor Biol 8:643–663

    Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717

    Article  CAS  Google Scholar 

  • Freitas HMO (1997) Drought. In: Prasad MNV (ed) Plant ecophysiology. Wiley, New York, pp 129–147

    Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the point of convergence in the stress signalling network. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Gange AC, Brown VK (1989) Effects of root herbivory by an insect on a foliar-feeding species, mediated through changes in the host plant. Oecologia 81:38–42

    Article  Google Scholar 

  • Gasic K, Korban SS (2006) Heavy metal stress. In: Madhava Rao KV, Raghavendra AS, Janardhan Reddy K (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 219–254 (http://www.link.springer.com/book/10.1007/1-4020-4225-6/page/1)

    Chapter  Google Scholar 

  • González-Teuber M, Gianoli E (2007) Tolerante to simulated herbivory in two populations of Convolvulus chilensis (Convolvulaceae). Acta Oecol 32:119–123

    Article  Google Scholar 

  • Gorham J (1990) Salt tolerance in Triticeae: K/Na discrimination in synthetic hexaploid wheats. J Exp Bot 41:623–627

    Article  CAS  Google Scholar 

  • Gorham J (1993) Genetics and physiology of enhanced K/Na discrimination. In: Randall P (ed) Genetic aspects of plant mineral nutrition. Kluwer Academic, Dordrecht, pp 151–159 (http://www.link.springer.com/book/10.1007/1-4020-4225-6/page/1 )

    Chapter  Google Scholar 

  • Gray GR, Chauvin LP, Sarhan F, Huner NPA (1997) Cold acclimation and freezing tolerance: a complex interaction of light and temperature. Plant Physiol 114:467–474

    PubMed  CAS  Google Scholar 

  • Griffiths ME, Rotjan RD, Ellmore GS (2008) Differential salt deposition and excretion on leaves of Avicennia germinans mangroves. Caribb J Sci 44:267–271

    Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1989) Phytochelatins, a class of heavy metal binding peptides from plants are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84:439–443

    Article  Google Scholar 

  • Grover A, Pareek A, Singla SL, Minhas D, Katyar S, Ghawana S, Dubey H, Agarwal M, Rao GU, Rathee J, Grover A (1998) Engineering crops for tolerance against abiotic stresses through gene manipulation. Curr Sci 75:689–696

    Google Scholar 

  • Guo WJ, Bundithya W, Goldsbrough PB (2003) Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytol 159:369–381

    Article  CAS  Google Scholar 

  • Guy CL, Li QB (1998) The organization and the evolution of the spinach stress 70 molecular chaperone gene family. Plant Cell 10:539–556

    PubMed  CAS  Google Scholar 

  • Hagemeyer J (1997) Salt. In: Prasad MNV (ed) Plant ecophysiology. Wiley, New York, pp 173–206

    Google Scholar 

  • Hall AE (2001) Crop responses to environment. CRC Press LLC, Boca Raton, pp 17–28

    Google Scholar 

  • Harborne JB (1993) Biochemicals interaction between higher plants. In: Harborne JB (ed) Introduction to ecological biochemistry. Academic, London, pp 243–259

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3:147–151

    Article  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 273:173–195

    Article  Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245

    Article  PubMed  CAS  Google Scholar 

  • Ishitani M, Nakamura T, Han SY, Takabe T (1995) Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol Biol 27:307–315

    Article  PubMed  CAS  Google Scholar 

  • Jansen MAK, Gaba V, Greenberg BM (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3:131–135

    Article  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Schiller C, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  PubMed  CAS  Google Scholar 

  • Kerchev PI, Fenton B, Foyer CH, Hancock RD (2012) Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant Cell Environ 35:441–453

    Article  PubMed  CAS  Google Scholar 

  • Khan MA, Ungar IA, Showalter AM (2000) The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk. J Arid Environ 45:73–84

    Article  Google Scholar 

  • Kneer R, Zenk MH (1992) Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry 31:2663–2667

    Article  CAS  Google Scholar 

  • Koiwai H, Nakaminami K, Seo M, Mitsuhasi W, Toyomasu T, Koshiba T (2004) Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol 134:1697–1707

    Article  PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    Article  PubMed  CAS  Google Scholar 

  • Kramer GF, Krizek DT, Mirecki RM (1992) Influence of UV-B radiation and spectral quality on UV-B-induced polyamine accumulation in soybean. Phytochemistry 31:1119–1125

    Article  CAS  Google Scholar 

  • Krauss ML (1988) Accumulation and excretion of five heavy metals by the salt marsh grass Spartina alterniflora. Bull New Jersey Acad Sci 33:39–43

    Google Scholar 

  • Kuboi T, Noguchi A, Yazaki J (1987) Relationship between tolerance and accumulation characteristics of cadmium in higher plants. Plant Soil 104:275–280

    Article  CAS  Google Scholar 

  • Kulandaivelu G, Lingakumar K, Premkumar A (1997) UV-B radiation. In: Prasad MNV (ed) Plant ecophysiology. Wiley, New York, pp 41–60

    Google Scholar 

  • Larcher W (1995) Physiological plant ecology, 3rd edn. Springer, Berlin, pp 48–55

    Book  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  PubMed  CAS  Google Scholar 

  • Leavitt J (1980) Responses of plants to environmental stresses, vol II. Academic, New York

    Google Scholar 

  • Lee S, Korban SS (2002) Transcriptional regulation of Arabidopsis thaliana phytochelatin synthase (AtPCS1) by cadmium during early stages of plant development. Planta 215:689–693

    Article  PubMed  CAS  Google Scholar 

  • Legendre L, Yueh YG, Crain R, Haddock N, Heinstein PF, Low PS (1993) Phospholipase-C activation during elicitation of the oxidative burst in cultured plant cells. J Biol Chem 268:24559–24563

    PubMed  CAS  Google Scholar 

  • Lei TT (2000) Allelochemistry as a plant stress. In: Orcutt DM, Nilsen ET (eds) The physiology of plants under stress. Wiley, New York, pp 329–385

    Google Scholar 

  • Lennartsson T, Tuomi J, Nilsson P (1998) Induction of overcompensation in the field gentian, Gentianella campestris. Ecology 79:1061–1072

    Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  PubMed  CAS  Google Scholar 

  • Liu DL, Lovette JVE (1993) Biologically active secondary metabolites of barley II. Phyto-toxicity of barley allelochemicals. J Chem Ecol 19:2231–2244

    Article  CAS  Google Scholar 

  • Liu JP, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein-kinase that is required for salt tolerance. Proc Natl Acad Sci USA 97:3730–3734

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Qiu N, Lu Q, Wang B, Kuang T (2002) Does salt stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors? Plant Sci 163:1063–1068

    Article  CAS  Google Scholar 

  • Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones JDG, Romeis T (2005) Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci USA 102:10736–10741

    Article  PubMed  CAS  Google Scholar 

  • Lyddon J, Teramura AH, Coffman CB (1987) UV-B radiation effects on photosynthesis, growth and cannabinoid production of two Cannabis sativa chemotypes. Photochem Photobiol 46:201–206

    Article  Google Scholar 

  • Ma YZ, Holt NE, Li XP, Niyogi KK, Fleming GR (2003) Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc Natl Acad Sci USA 100:4377–4382

    Article  PubMed  CAS  Google Scholar 

  • Madhava Rao KV (2006) Introduction. In: Madhava Rao KV, Raghavendra AS, Janardhan Reddy K (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 1–14

    Chapter  Google Scholar 

  • Mantri N, Patade V, Penna S, Ford R, Pang E (2012) Abiotic stress responses in plants: present and future. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York

    Google Scholar 

  • Marquis RJ (1992) Selective impact of herbivores. In: Fritz RS, Simms EL (eds) Plant resistance to herbivores and pathogens. University of Chicago Press, Chicago, pp 392–425

    Google Scholar 

  • Marquis RJ (1996) Plant architecture, sectoriality and plant tolerance to herbivores. Vegetatio 127:85–97

    Article  Google Scholar 

  • Martínez Moreno D, Núñez-Farfán J, Terrazas T, Ruiz LM, Trinidad-Santos A, Trejo C, Larque-Saavedra A (1999) Plastic responses to clipping in two species of Amaranthus from the Sierra Norte the Puebla, Mexico. Gen Res Crop Evol 46:225–234

    Article  Google Scholar 

  • McNaughton SJ (1983) Compensatory plant growth as a response to herbivory. Oikos 40:329–336

    Article  Google Scholar 

  • Mehlhorn H (1990) Ethylene-promoted ascorbate peroxidase activity protects plants against hydrogen peroxide, ozone and paraquat. Plant Cell Environ 13:971–976

    Article  CAS  Google Scholar 

  • Mejuto-Marti M, Bollain-Rodriguez M, Herrero-Latorre C, Bermejo-Martinez F (1988) Selenium content of vegetables, fruits and cereals in Galicia (Northwest Spain). J Agric Food Chem 36:293–295

    Article  CAS  Google Scholar 

  • Memon AR, Yatazawa M (1984) Nature of manganese complexes in Mn accumulator plant Acanthopanax sciadophylloides. J Plant Nutr 7:961–974

    Article  CAS  Google Scholar 

  • Memon AR, Chino M, Takeoka Y, Hara K, Yatazawa M (1980) Distribution of manganese in leaf tissues of manganese accumulator: Acanthopanax sciadophylloides as revealed by electron probe X-ray microanalyzer. J Plant Nutr 2:457–477

    Article  CAS  Google Scholar 

  • Memon AR, Chino M, Hidaka H, Hara K, Yatazawa M (1981) Manganese toxicity in field grown tea plants and microdistribution of manganese in the leaf tissues as revealed by electron probe X-ray microanalyzer. Soil Sci Plant Nutr 27:317–328

    Article  CAS  Google Scholar 

  • Mewis I, Tokuhisa JG, Schultz JC, Appel HM, Ulrichs C, Gershenzon J (2006) Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry 67:2450–2462

    Article  CAS  Google Scholar 

  • Milthorpe FL, Moorby J (1979) An introduction to crop physiology. Cambridge University Press, Cambridge, pp 148–166

    Google Scholar 

  • Miroshnichenko S, Tripp J, Nieden U, Neumann D, Conrad U, Manteuffel R (2005) Immunomodulation of function of small heat shock proteins prevents their assembly into heat stress granules and results in cell death at sublethal temperatures. Plant J 41:269–281

    Article  PubMed  CAS  Google Scholar 

  • Moisyadi S, Harrington HM (1990) Functional characterization of a low molecular weight heat shock protein in cultured sugarcane cells. Plant Physiol Suppl 93:88

    Google Scholar 

  • Molas J (1997) Ultrastructural response of cabbage outer leaf mesophyll cells (Brassica oleracea) to excess of nickel. Acta Soc Bot Pol 66:307–317

    CAS  Google Scholar 

  • Molisch H (1937) Der einfluss einer pflanzen auf die andere-allelopathie. Fischer, Jena, p 106

    Google Scholar 

  • Mulroy TW (1979) Spectral properties of heavily glaucous and non-glaucous leaves of a succulent rosette-plant. Oecologia 38:349–357

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Greenway H, Kirst GO (1983) Halotolerant eukaryotes. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, vol 12C, Physiological plant ecology III. Springer, New York, pp 59–135

    Google Scholar 

  • Munns R, Hare RA, James RA, Rebetzke GJ (2000) Genetic variation for improving the salt tolerance of durum wheat. Aust J Agric Res 51:69–74

    Article  CAS  Google Scholar 

  • Munns R, Husain S, Rivelli AR, James RA, Condon AG, Linsay MP, Lagudah ES, Schachtman DP, Hare RA (2002) Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil 247:93–105

    Article  CAS  Google Scholar 

  • Murphy TM, Huerta AJ (1990) Hydrogen peroxide formation in cultured rose cells in response to UV-C radiation. Physiol Plant 78:247–253

    Article  CAS  Google Scholar 

  • Nakamoto H, Hiyama T (1999) Heat-shock proteins and temperature stress. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 399–416

    Google Scholar 

  • Orcutt DM, Nilsen ET (2000) The physiology of plants under stress. Wiley, New York, p 680

    Google Scholar 

  • Orians C, Thorn A, Gómez S (2011) Herbivore-induced resource sequestration in plants: why bother? Oecologia 167:1–9

    Article  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  PubMed  CAS  Google Scholar 

  • Penfield S (2008) Temperature perception and signal transduction in plants. New Phytol 179:615–628

    Article  PubMed  CAS  Google Scholar 

  • Perez-Prat E, Narasimhan M, Niu X, Botella MA, Bressan R, Valpuesta V (1994) Growth cycle stage-dependent NaCl induction of plasma membrane H+-ATPase mRNA accumulation in de-adapted tobacco cells. Plant Cell Environ 17:327–333

    Article  CAS  Google Scholar 

  • Pieczonka K, Rosopulo A (1985) Distribution of cadmium, copper, and zinc in the caryopsis of wheat (Triticum aestivum L.). Fresenius Z Anal Chem 322:697–699

    Article  CAS  Google Scholar 

  • Piotrowska M, Dudka S (1994) Estimation of maximum permissible levels of cadmium in a light soil by using cereal plants. Water Air Soil Pollut 73:179–188

    Article  CAS  Google Scholar 

  • Prasad MNV (1997) Trace metals. In: Prasad MNV (ed) Plant ecophysiology. Wiley, New York, pp 207–249

    Google Scholar 

  • Rajashekar CB (2000) Cold response and freezing tolerance in plants. In: Wilkinson RE (ed) Plant environment interaction. Marcel Dekker, New York, pp 321–342

    Google Scholar 

  • Rao MV, Dubey PS (1993) Response of hydrogen peroxide scavenging system in 2 soybean cultivars exposed to SO2 – experimental evidence for the detoxification of SO2 by enhanced H2O2 scavenging components. Environ Poll 82:99–105

    Article  CAS  Google Scholar 

  • Redondo-Gómez S, Wharmby C, Castillo JM, Mateos-Naranjo E, Luque CJ, de Cires A, Luque T, Davy AJ, Figueroa ME (2006) Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiol Plantarum 128:116–124

    Article  CAS  Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Davy AJ, Fernández-Muñoz F, Castellanos EM, Luque T, Figueroa ME (2007) Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Ann Bot 100:555–563

    Article  PubMed  CAS  Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Cambrollé J, Luque T, Figueroa ME, Davy AJ (2008) Carry-over of differential salt tolerance in plants grown from dimorphic seeds of Suaeda splendens. Ann Bot 102:103–112

    Article  PubMed  Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME, Davy AJ (2010a) salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum. Plant Biol 12:79–87

    Article  PubMed  CAS  Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Andrades-Moreno L (2010b) Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. J Hazard Mater 184:299–307

    Article  PubMed  CAS  Google Scholar 

  • Redondo-Gómez S, Andrades-Moreno L, Mateos-Naranjo E, Parra R, Valera-Burgos J, Aroca R (2011) Synergic effect of salinity and zinc stress on growth and photosynthetic responses of the cordgrass Spartina densiflora. J Exp Bot 62:5521–5530

    Article  PubMed  CAS  Google Scholar 

  • Rice EL (1984) Allelopathy. Academic, London, p 422

    Google Scholar 

  • Rice EL (1987) Role in agriculture and forestry. In: Waller GR (ed) Allelochemicals, vol 330. American Chemical Society, Washington, DC, pp 343–357

    Google Scholar 

  • Rice-Evans CA, Miller NJ, Papaga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Rivai IF, Koyama H, Suzuki S (1990) Cadmium content in rice and its daily intake in various countries. Bull Environ Contam Toxicol 44:910–916

    Article  PubMed  CAS  Google Scholar 

  • Roberts AHC, Longhurst RD, Brown MW (1994) Cadmium status of soils, plants and grazing animals in New Zealand. N Z J Agric Res 37:119–129

    Article  CAS  Google Scholar 

  • Rocha-Granados MC, Sánchez-Hernández C, Sánchez-Hernández C, Martínez-Gallardo NA, Ochoa-Alejo N, Délano-Frier JP (2005) The expression of the hydroxyproline-rich glycopeptide systemin precursor A in response to (a)biotic stress and elicitors is indicative of its role in the regulation of the wound response in tobacco (Nicotiana tabacum L.). Planta 222:794–810

    Article  CAS  Google Scholar 

  • Rosenthal JP, Welter SC (1995) Tolerance to herbivory by a stemboring caterpillar in architecturally distinct maizes and wild relative. Oecologia 102:146–155

    Article  Google Scholar 

  • Roy BA, Kirchner JW (2000) Evolutionary dynamics of pathogen resistance and tolerance. Evolution 54:51–63

    PubMed  CAS  Google Scholar 

  • Sage RF, Reid CD (1994) Photosynthetic response mechanisms to environmental change in C3 plants. In: Wilkinson RE (ed) Plant environment interactions. Marcel Dekker, New York, pp 413–499

    Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  PubMed  CAS  Google Scholar 

  • Satoh M, Kriedeman PE, Loveys BR (1977) Changes in photosynthetic activity and related processes following decapitations in mulberry trees. Physiol Plant 41:203–210

    Article  CAS  Google Scholar 

  • Sauter A, Dietz KJ, Hartung W (2002) A possible stress physiological role of the abscisic acid conjugates in root-to-shoot signalling. Plant Cell Environ 25:223–228

    Article  PubMed  CAS  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    PubMed  CAS  Google Scholar 

  • Shafer WE, Schönherr J (1985) Accumulation and transport of phenol, 2-nitrophenol, and 4-nitrophenol in plant cuticles. Ecotoxicol Environ Saf 10:239–252

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Schrader SM (2006) High temperature stress. In: Madhava Rao KV, Raghavendra AS, Janardhan Reddy K (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 101–130

    Chapter  Google Scholar 

  • Shi HZ, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long distance Na+ transport in plants. Plant Cell 14:465–477

    Article  PubMed  CAS  Google Scholar 

  • Shi HT, Li RJ, Cai W, Liu W, Fu ZW, Lu YT (2012) In vivo role of nitric oxide in plant response to abiotic and biotic stress. Plant Signal Behav 7:438–440

    Article  CAS  Google Scholar 

  • Sicker D, Schulz M (2002) Benzoxazinones in plants: occurrence, synthetic access, and biological activity. In: Atta-ur-Rahman (ed) Bioactive natural products (part H), vol 27. Elsevier Science, Amsterdam, pp 185–232

    Chapter  Google Scholar 

  • Simms EL (2000) Defining tolerance as a norm of reaction. Evol Ecol 14:563–570

    Article  Google Scholar 

  • Singla SL, Pareek A, Grover A (1997) High temperature. In: Prasad MNV (ed) Plant ecophysiology. Wiley, New York, pp 101–127

    Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteosome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Smith KC (1989) The science of photobiology. Plenum Press, New York, pp 155–190

    Book  Google Scholar 

  • Smith LL, Lanza J, Smith GC (1990) Amino acid concentrations in extrafloral nectar of Impatiens sultani increase after simulated herbivory. Ecology 71:107–115

    Article  CAS  Google Scholar 

  • Smith BN, Harris LC, McCarlie VW, Stradling DL, Thygerson T, Walker J, Criddle RS, Hansen LD (2001) Time, plant growth, respiration, and temperature. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker, New York, pp 1–12

    Google Scholar 

  • Stapleton AE (1992) Ultraviolet radiation and plants: burning questions. Plant Cell 4:1353–1358

    PubMed  Google Scholar 

  • Steffens JC (1990) The heavy metal-binding peptides of plants. Annu Rev Plant Physiol Plant Mol Biol 41:553–575

    Article  CAS  Google Scholar 

  • Steinbrenner A, Gómez S, Osorio S, Fernie AR, Orians CM (2011) Herbivore-induced changes in tomato (Solanum lycopersicum) primary metabolism: a whole plant perspective. J Chem Ecol 37:1294–1303

    Article  PubMed  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Webb MS (1993) Membrane destabilization during freeze-induced dehydration. In: Close TJ, Bray EA (eds) Plant responses to cellular dehydration during environmental stress. American Society of Plant Physiologist, Rockville, pp 37–47

    Google Scholar 

  • Strauss SY, Agrawal AA (1999) The ecology and evolution of plant tolerance to herbivory. Tree 14:179–185

    PubMed  Google Scholar 

  • Sutherland MW (1991) The generation of oxygen radicals during host plant responses to infection. Physiol Mol Plant Pathol 39:79–93

    Article  CAS  Google Scholar 

  • Teraza W, Martinez D, Rengifo E, Herrera A (2003) Photosynthetic responses of the tropical snipy shrub Lycium nodosum (Solanaceae) to drought, soil salinity and saline spray. Ann Bot 92:757–765

    Article  CAS  Google Scholar 

  • Thiboldeaux RL, Lindroth RL, Tracy JW (1994) Differential toxicity of juglone (5-hydroxy-1,4-naphthoquinone) and related naphthoquinones to saturniid moths. J Chem Ecol 20:1631–1641

    Article  CAS  Google Scholar 

  • Thorne JH, Koller HR (1974) Influence of assimilate demand on photosynthesis, diffusive resistances, translocation, and carbohydrate levels of soybean leaves. Plant Physiol 54:201–207

    Article  PubMed  CAS  Google Scholar 

  • Tiffin P (2000) Mechanisms of tolerance to herbivore damage: what do we know? Evol Ecol 14:523–536

    Article  Google Scholar 

  • Tomsett AB, Thurman DA (1988) Molecular biology of metal tolerances of plants. Plant Cell Environ 11:383–394

    Article  CAS  Google Scholar 

  • Towers GHN, Wat CK (1978) Biological activity of polyacetylenes. Rev Latinoam Quim 9:162–170

    CAS  Google Scholar 

  • Trischuk RG, Schilling BS, Wisniewski M, Gusta LV (2006) Freezing stress: systems biology to study cold tolerance. In: Madhava Rao KV, Raghavendra AS, Janardhan Reddy K (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 131–156

    Chapter  Google Scholar 

  • Trumble JT, Kolodny-Hirsch DM, Ting IP (1993) Plant compensation for arthropod herbivory. Annu Rev Entomol 38:93–119

    Article  Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    PubMed  CAS  Google Scholar 

  • Veirling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    Article  Google Scholar 

  • Velikova V, Edreva A, Loreto F (2005) Endogenous isoprene protects Phragmites australis leaves against singlet oxygen. Plan Cell Environ 28:318–327

    Article  CAS  Google Scholar 

  • Vézina LP, Ferullo JM, Laliberté G, Laberge S, Willemot C (1997) Chilling and freezing. In: Prasad MNV (ed) Plant ecophysiology. Wiley, New York, pp 61–100

    Google Scholar 

  • Voesenek LACJ, Van der Veen R (1994) The role of phytohormones in plant stress: too much or too little water. Acta Bot Neerl 43:91–127

    CAS  Google Scholar 

  • von Rad U, Hüttl R, Lottspeich F, Gierl A, Frey M (2001) Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. Plan J 28:633–642

    Google Scholar 

  • Wahid A, Close TJ (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51:104–109

    Article  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  PubMed  CAS  Google Scholar 

  • Waring PF, Khalifa MM, Treharne KJ (1968) Rate-limiting processes in photosynthesis at saturating light intensities. Nature 220:453–458

    Article  Google Scholar 

  • Waseem M, Ali A, Tahir M, Nadeem MA, Ayub M, Tanveer A, Ahmad R, Hussain M (2011) Mechanisms of drought tolerance in plant and its management through different methods. Continental J Agric Sci 5:10–25

    Google Scholar 

  • Wehner J, Antunes PM, Powell JR, Mazukatow J, Rilling MC (2010) Plant pathogen protection by arbuscular mycorrhizas: a role for fungal diversity? Pedobiologia 53:197–201

    Article  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:687–700

    Article  CAS  Google Scholar 

  • Welter SC (1989) Arthropod impact on plant gas exchange. In: Bernays EA (ed) Insect-plant interactions, vol I. CRC Press, Boca Raton, pp 135–215

    Google Scholar 

  • Werner C, Maitile P (1985) Accumulation of coumaryl glycosides in vacuoles of barley mesophyll protoplasts. J Plant Physiol 118:237–249

    Article  PubMed  CAS  Google Scholar 

  • Williams WP (1990) Cold-induced lipid phase transitions. Philos Trans R Soc Lond B Biol Sci 326:555–567

    Article  PubMed  CAS  Google Scholar 

  • Wink M (1998) Chemical ecology of alkaloids. In: Roberts MF, Wink M (eds) Alkaloids: biochemistry, ecology, and medical applications. Plenum Press, New York, pp 265–300

    Google Scholar 

  • Wisniewski M, Arora A (1993) Adaptation and response of fruit trees to freezing temperatures. In: Biggs AR (ed) Cytology, histology, and histochemistry of fruit tree diseases. CRC Press, Boca Raton, pp 299–320

    Google Scholar 

  • Wolkers W, Tetteroo FAA, Alberde M, Hoekstra FA (1999) Changed properties of the cytoplasmic matrix associated with desiccation tolerance of dried carrot somatic embryos. An in situ Fourier transform infrared spectroscopic study. Plant Physiol 120:153–163

    Article  PubMed  CAS  Google Scholar 

  • Xiang C (1999) The activation sequence-1 cognate promoter elements play critical roles in the activation of defense-related genes in higher plants. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 527–538

    Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    Article  PubMed  CAS  Google Scholar 

  • Xu JK, Yang LX, Wang YL, Wang ZQ (2005) Advances in the study uptake and accumulation of heavy metal in rice (Oryza sativa) and its mechanisms. Chinese Bull Bot 22:614–622

    Google Scholar 

  • Yacoob RK, Filion WG (1987) The effects of cold-temperature stress on gene expression in maize. Biochem Cell Biol 65:112–119

    Article  CAS  Google Scholar 

  • Yang KA, Lim CJ, Hong JK, Park CY, Cheong YH, Chung WS, Lee KO, Lee SY, Cho MJ, Lim CO (2006) Identification of cell wall genes modified by a permissive high temperature in Chinese cabbage. Plant Sci 171:175–182

    Article  CAS  Google Scholar 

  • Yeh CHM, Hung WCH, Huang HJ (2003) Copper treatment activates mitogen-activated protein kinase signalling in rice. Physiol Plant 119:392–399

    Article  CAS  Google Scholar 

  • Yokota A, Takahara K, Akashi K (2006) Water stress. In: Madhava Rao KV, Raghavendra AS, Janardhan Reddy K (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 15–40

    Chapter  Google Scholar 

  • Yoshida S, Uemura M (1984) Protein and lipid composition of isolated plasma membranes from orchard grass (Dactylis glomerata L.) and changes during cold acclimation. Plant Physiol 75:31–37

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to the Spanish Science and Technology Ministry, Govt. of Spain for its financial support (project CTM2008-04453).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Redondo-Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Redondo-Gómez, S. (2013). Abiotic and Biotic Stress Tolerance in Plants. In: Rout, G., Das, A. (eds) Molecular Stress Physiology of Plants. Springer, India. https://doi.org/10.1007/978-81-322-0807-5_1

Download citation

Publish with us

Policies and ethics