UV–Vis. Spectroscopy: Herbal Drugs and Fingerprints

  • Devi Datt Joshi


The UV–Vis. spectroscopy is a facile method to decipher herbals and herbal products for its characterization, identification, authentication, stability, adulteration, and purity. Thousands of research papers are available for use of UV–Vis. spectrum for new drug development, screening of plant extracts for various medicaments, therapeutic ingredients and their metabolites, absorption, nutritional components, green synthesis of nanoparticles, fingerprint for ultra-diluted drugs, and toxicity studies. The prediction by UV–Vis spectrum for the skeleton of molecule and its functional group(s), present in extract form, help to develop method of isolation and purification.


Silver Nanoparticles Lower Unoccupied Molecular Orbital Reference Beam Herbal Drug Marker Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gattuso G, Barreca D, Gargiulli C, Leuzzi U, Caristi C. Flavonoid composition of Citrus juices. Molecules. 2007;12:1641–73.PubMedCrossRefGoogle Scholar
  2. 2.
    Polydera AC, Stoforos NG, Taoukis PS. Effect of high hydrostatic pressure treatment on post processing antioxidant activity of fresh Navel orange juice. Food Chem. 2005;91:495–503.CrossRefGoogle Scholar
  3. 3.
    Miyake Y, Yamamoto K, Morimitsu Y, Osawa T. Isolation of C-glucosylflavone from lemon peel and antioxidative activity of flavonoid compounds in lemon fruit. J Agric Food Chem. 1997;45:4619–23.CrossRefGoogle Scholar
  4. 4.
    Leuzzi U, Caristi C, Panzera V, Licandro G. Flavonoids in pigmented orange juice and second-pressure extracts. J Agric Food Chem. 2000;48:5501–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Mabry TJ, Markham KR, Thomas MB. The ultraviolet spectra of flavones and flavonols. In: The systematic identification of flavonoids. Berlin: Spinger; 1970.CrossRefGoogle Scholar
  6. 6.
    De-Rijke E, Out P, Niessen WMA, Ariese F, Gooijer C, Brinkman UAT. Analytical separation and detection methods for flavonoids. J Chromatogr A. 2006;1112:31–63.PubMedCrossRefGoogle Scholar
  7. 7.
    Sirikatitham A, Chuchom T, Itharat A. Development of the chromatographic fingerprint analysis of dioscorealides and dioscoreanone from Dioscorea membranacea Pierre. Songklanakarin J Sci Technol. 2007;29 Suppl 1:101–7.Google Scholar
  8. 8.
    Elmets CA, Young C. Sunscreen and photo carcinogenesis: an objective assessment. Phytochem Photobiol. 1996;63:435–9.CrossRefGoogle Scholar
  9. 9.
    Svobodova A, Psotova J, Walterova D. Natural phenolics in the prevention of UV-induced skin damage, a review. Biomed Pap. 2003;147:137–45.CrossRefGoogle Scholar
  10. 10.
    Khazaeli P, Mehrabanti M. Screening of sun protective activity of the ethyl acetate extracts of some medicinal plants. J Pharm Res. 2008;7(1):5–9.Google Scholar
  11. 11.
    Markham KR. The techniques of flavonoid identification. London: Academic; 1982. p. 16.Google Scholar
  12. 12.
    Gharavi SM, Tavokoli N, Pardakhti A, Baghaei ZN. Determination of sun protection factor of sunscreens by two different in vitro methods. J Res Med Sci. 1999;2:53–4.Google Scholar
  13. 13.
    Hussain I, Khan L, Khan MA, Khan FU, Ayaz S, Khan FU. UV spectrophotometric analysis profile of ascorbic acid in medicinal plants of Pakistan. World Appl Sci J. 2010;9(7):800–3.Google Scholar
  14. 14.
    Anna RB, Ada SV. Evaluation of sampling and extraction procedures for the analysis of ascorbic acid from pear fruit tissue. Food Chem. 2002;77:257.CrossRefGoogle Scholar
  15. 15.
    Savithramma N, Rao ML, Rukmini K, devi Suvarnalatha P. Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. Int J ChemTech Res. 2011;3(3):1394–402.Google Scholar
  16. 16.
    Singh R, Goel A, Joshi DD. Biosynthesis of silver nanoparticles by Cinnamomum tamala twigs. Indian Patent, Pending. Application no. 2026/DEL/2011; 2011.Google Scholar
  17. 17.
    Thirumurgan A, Tomy NA, Jai Ganesh R, Gobikrishnan S. Biological reduction of silver nanoparticles using plant leaf extracts and its against clinically isolated organism. De Phar Chem. 2010;2:279–84.Google Scholar
  18. 18.
    Shankar SS, Rai A, Ahmad A, Sastry MJ. Rapid synthesis of Au, Ag and bimetallic Au shell nanoparticles using neem. J Colloid Interface Sci. 2004;275:496–502.PubMedCrossRefGoogle Scholar
  19. 19.
    Uthaman S, Annapoorna SKS, Ravindranath M, Shanti KC, Lakshmanan VK. Novel boswellic acids nanoparticles induces cell death in prostate cancer cells. J Nat Prod. 2012;5:100–8.Google Scholar
  20. 20.
    Ahmad N, Sharma S, Singh VN, Shamsi SF, Fatma A, Mehta BR. Biosynthesis of silver nanoparticles from Desmodium triflorum: a novel approach towards weed utilization. Biotechnol Res Int. 2011;1:1–8.CrossRefGoogle Scholar
  21. 21.
    Prabhu N, Divya TR, Yamuna G. Synthesis of silver phyto nanoparticles and their antibacterial efficacy. Dig J Nanomater Biostruct. 2011;5:185–9.Google Scholar
  22. 22.
    Ding X, Staudingerm JL. The ratio of constitutive androstane receptor to pregnane x receptor determines the activity of guggulsterone against the Cyp2b10 promoter. J Pharmacol Exp Therap. 2005;314(1):120–7.CrossRefGoogle Scholar
  23. 23.
    Szapary PO, Wolfe ML, Bloedon LAT, Cucchiara AJ, Dermarderosian AH, Cirigliano MD, Rader DJ. Guggulipid for the treatment of hypercholesterolemia: a randomized controlled trial. J Am Med Assoc. 2003;290:765–72.CrossRefGoogle Scholar
  24. 24.
    Ahmad R, Ali Z, Wa Y, Kulkarni S, Avery R, Chaudhary MQ, Rahman A, Khan IA. Chemical characterization of commercial Commiphora wightii resin sample and chemical profiling to assess for authenticity. Planta Med. 2011;77:945–50.CrossRefGoogle Scholar
  25. 25.
    Sharma A, Purkait B. Energy of commercially available ultra diluted natural cardiotropic drug Digitalis purpurea: an UV spectroscopic study. Res J Pharmacol. 2009;3(4):58–62.Google Scholar
  26. 26.
    Gupta V, Bansal P, Garg A, Meena AK. Pharmacopoeial standardization of Hibiscus rosa sinensis Linn. Int J Pharm Clin Res. 2009;1(3):124–6.Google Scholar
  27. 27.
    Hostettmann K. Strategy for the biological and chemical evaluation of plant extracts. Invited lecture presented at the International Conference on Biodiversity and Bioresources: Conservation and Utilization, 23–37 November 1997, Phuket, Thailand. Available at As on 20 Sept 2011.
  28. 28.
    Siu-kay W, Siu-kay T, Sik-yiu k, Kwan-li S, et al. Establishment of characteristic fingerprint chromatogram for the identification of Chinese herbal medicines. J Food Drug Anal. 2004;12(2):110–4.Google Scholar


  1. Arya V. Living system: eco-friendly nano factories. Digest J Nanomater Biostruct. 2010;5:9–21.Google Scholar
  2. Ferreres F, Llorach R, Gil-Izquierdo A. Characterization of the inter glycosidic linkage in di-, tri-, tetra- and pentaglycosylated flavonoids and differentiation of positional isomers by liquid chromatography/electrospray ionization tandem mass spectrometry. J Mass Spectrom. 2004;39:312–21.PubMedCrossRefGoogle Scholar
  3. Gardea-Torresdey JL, Gomez E, Peralta Videa J, Parsons JG, Troiani HE, Jose-Yacaman M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Langmuir. 2003;13:1357.CrossRefGoogle Scholar
  4. Gauthaman KK, Saleem MT, Thanislas PT, Prabhu VV, Krishnamoorthy KK, Devaraj NS, et al. Cardioprotective effect of the Hibiscus rosa-sinensis flowers in an oxidative stress model of myocardial ischemic reperfusion injury in rat. BMC Complement Altern Med. 2006;6:32–9.PubMedCrossRefGoogle Scholar
  5. Ip M, Lui SL, Poon VKM, Lung I, Burd A. Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol. 2006;55:59–63.PubMedCrossRefGoogle Scholar
  6. Huie CW. A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal Bioanal Chem. 2002;373:23–30.PubMedCrossRefGoogle Scholar
  7. Kimmatkar N, Thawani V, Hingorani L, Khiyani R. Efficacy and tolerability of Boswellia serrata extract in treatment of osteoarthritis of knee – a randomized double blind placebo controlled trial. Int J Phytother Phytopharm. 2003;10(1):3–7.CrossRefGoogle Scholar
  8. Nagarajan M, Waszkuc TW, Sun J. Simultaneous determination of E- and Z-guggulsterones in dietary supplements containing Commiphora mukul extract (guggulipid) by liquid chromatography. J AOAC Int. 2001;84:24–8.PubMedGoogle Scholar
  9. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73:1712–20.PubMedCrossRefGoogle Scholar
  10. Robards K. Strategies for the determination of bioactive phenols in plants, fruit and vegetables. J Chromatogr A. 2003;1000:657–91.PubMedCrossRefGoogle Scholar
  11. Sharma A, Ajay GN, Mahadik KR. Review article molecular markers: new prospects in plant genome analysis. Pharmacogn Rev. 2008;2(3):21–3.Google Scholar
  12. Urizar NL, Moore DD. Gugulipid: a natural cholesterol lowering agent. Ann Rev Nutr. 2003;23:303–13.CrossRefGoogle Scholar
  13. Zhang J, Yang CJ, Wu DG. Studies on the diterpenes of Euphorbia prolifera. Chin Trad Herb Drug. 1998;29:73–6.Google Scholar

Copyright information

© Springer India 2012

Authors and Affiliations

  1. 1.Amity Institute of Phytochemistry & PhytomedicineAmity University, Uttar PradeshNoidaIndia

Personalised recommendations