Advertisement

HPLC: Herbal Drugs and Fingerprints

  • Devi Datt Joshi
Chapter

Abstract

HPLC is a highly powerful, sensitive, and versatile chromatographic technique for separation, purification, and characterization of chemical compounds, especially of natural product origin. The choice of the appropriate column and detector in HPLC analysis is crucial because of the diversity of chemical properties of the ingredients. Normal and reverse-phase analytical columns, with different specification for qualitative and quantitative applications of HPLC with various detectors, are being in practice, globally; each combination has unique potential and limitations, but till the day, there is a look for universal HPLC detector.

Keywords

High Performance Liquid Chromatography High Performance Liquid Chromatography Atmospheric Pressure Chemical Ionization Vanillic Acid High Performance Liquid Chromatography Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    David F, Vanhoenacker G, Tienpont B, Francois I, Sandra P. Coupling columns and multidimensional configurations to increase peak capacity in liquid chromatography. Lc Gc Eur. 2007;20:154–8.Google Scholar
  2. 2.
    Wilson ID, Brinkman UAT. Hyphenation and hypernation – the practice and prospects of multiple hyphenation. J Chromatogr A. 2003;1000:325–56.PubMedCrossRefGoogle Scholar
  3. 3.
    Henry R, Santasania CT. Reporter. Separation of closely related compounds. Sigma-Aldrich. 2010;28.5: 6–7.Google Scholar
  4. 4.
    The United States Pharmacopoeia. XXIIIth revision, Natural formulas 18, Rockville: United States Pharmacopoeial Convention; 1995.Google Scholar
  5. 5.
    Mcmaster MC. HPLC a practical user’s guide. New York: VCH; 1994. p. 85.Google Scholar
  6. 6.
    Verma S. Reporter. Separation of closely related compounds. Sigma-Aldrich. 2010;28.5: 9.Google Scholar
  7. 7.
    Schobel U, Frenay M, van Elswijk DA, McAndrews JM, et al. High resolution screening of plant natural product extracts for estrogen receptor alpha and beta binding activity using an online HPLC-MS biochemical detection system. J Biomol Screen. 2001;6:291–303.PubMedGoogle Scholar
  8. 8.
    Oosterkamp AJ, van der Hoeven R, Glassgen W, Konig B, et al. Gradient reversed-phase liquid chromatography coupled on-line to receptor-affinity detection based on the urokinase receptor. J Chromatogr B. 1998;715(1):331–8.CrossRefGoogle Scholar
  9. 9.
    Gao XF, Dan M, Zhao AH, Xie GX, Jia W. Simultaneous determination of saponins in flower buds of Panax notoginseng using high performance liquid chromatography. Biomed Chromatogr. 2008;22:244–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Ozkan SA. LC with electrochemical detection, recent application to pharmaceuticals and biological fluids. Chromatographia. 2007;66:S3–13.CrossRefGoogle Scholar
  11. 11.
    Vial J, Jardy A. Study of the linear range in HPLC analyses with UV detection: methodology and experimental application to the influence of the analyte UV spectrum. J High Resolut Chromatogr. 1999;22:217–21.CrossRefGoogle Scholar
  12. 12.
    Brantner AH, Males Z. Quality assessment of Paliurus spina-christi extracts. J Etnopharmacol. 1999;66:175–9.CrossRefGoogle Scholar
  13. 13.
    Fuzzati N. Analysis methods of ginsenosides. J Chromatogr B. 2004;812:119–33.Google Scholar
  14. 14.
    Tolonen A, Hohtola A, Jalonen J. Fast high-performance liquid chromatographic analysis of naphthodianthrones and phloroglucinols from Hypericum perforatum extracts. Phytochem Anal. 2003;14:306–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Hasler A, Sticher O, Meier B. Identification and determination of the flavonoid from Ginkgo biloba by high performance liquid chromatography. J Chromatogr. 1992;605:41–8.CrossRefGoogle Scholar
  16. 16.
    Dubber MJ, Kanfer I. High performance liquid chromatographic determination of selected flavonols in Ginkgo biloba solid oral dosage forms. J Pharm Pharm Sci. 2004;7:303–9.PubMedGoogle Scholar
  17. 17.
    Sloley BD, Tawfik SR, Scherban KA, Tam YK. Quality control analyses for ginkgo extracts require analysis of intact flavonol glycosides. J Food Drug Anal. 2003;11:102–7.Google Scholar
  18. 18.
    Chen P, Ozcan M, Harnly J. Chromatographic fingerprint analysis for evaluation of Ginkgo biloba products. Anal Bioanal Chem. 2007;389:251–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Li WK, Fitzloff JF. HPLC determination of flavonoids and terpene lactones in commercial Ginkgo biloba products. J Liq Chromatogr Relat Technol. 2002;25:2501–14.CrossRefGoogle Scholar
  20. 20.
    Fuzzati N, Pace R, Villa E. A simple HPLC-UV method for the assay of ginkgolic acids in Ginkgo biloba extracts. Fitoterapia. 2003;74:247–56.PubMedCrossRefGoogle Scholar
  21. 21.
    Leitner A, Emmert J, Boerner K, Lindner W. Influence of solvent additive composition on chromatographic separation and sodium adduct formation of peptides in HPLC-ESI MS. Chromatographia. 2007;65:649–53.CrossRefGoogle Scholar
  22. 22.
    Mohn T, Potterat O, Hamburger M. Quantification of active principles and pigments in leaf extracts of Isatis tinctoria by HPLC/UV/MS. Planta Med. 2007;73:151–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Bebrevska L, Bravo L, Vandervoort J, Pieters L, Vlietinck A, Apers S. Development and validation of an HPLC method for quality control of Pueraria lobata flower. Planta Med. 2007;73:1606–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Liang Z, Jiang Z, Ho H, Zhao Z. Comparative analysis of Oldenlandia diffusa and its substitutes by high performance liquid chromatographic fingerprint and mass spectrometric analysis. Planta Med. 2007;73:1502–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Ge GB, Zhang YY, Hao DC, Hu Y, Luan HW, Liu XB, et al. Chemotaxonomic study of medicinal Taxus species with fingerprint and multivariate analysis. Planta Med. 2008;74:773–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Jaimez J, Fente CA, Vazquez BI, Franco CM, Cepeda A, Mahuzier G, et al. Application of the assay of aflatoxins by liquid chromatography with fluorescence detection in food analysis. J Chromatogr A. 2000;882:1–10.PubMedCrossRefGoogle Scholar
  27. 27.
    Braga S, de Medeiros FD, Oliveira ED, Macedo RO. Development and validation of a method for the quantitative determination of aflatoxin contaminants in Maytenus ilicifolia by HPLC with fluorescence detection. Phytochem Anal. 2005;16:267–71.PubMedCrossRefGoogle Scholar
  28. 28.
    Klvana M, Chen JK, Lepine F, Legros R, Jolicoeur M. Analysis of secondary metabolites from Eschscholtzia californica by high-performance liquid chromatography. Phytochem Anal. 2006;17:236–42.PubMedCrossRefGoogle Scholar
  29. 29.
    Kristl J, Veber M, Krajnicic B, Oresnik K, Slekovec M. Determination of jasmonic acid in Lemna minor (L.) by liquid chromatography with fluorescence detection. Anal Bioanal Chem. 2005;383:886–93.PubMedCrossRefGoogle Scholar
  30. 30.
    Li FM, Zhang CH, Guo XJ, Feng WY. Chemiluminescence detection in HPLC and CE for pharmaceutical and biomedical analysis. Biomed Chromatogr. 2003;17:96–105.PubMedCrossRefGoogle Scholar
  31. 31.
    Ohba Y, Kuroda N, Nakashima K. Liquid chromatography of fatty acids with chemiluminescence detection. Anal Chim Acta. 2002;465:101–9.CrossRefGoogle Scholar
  32. 32.
    Zhang QL, Cui H. Simultaneous determination of quercetin, kaempferol, and isorhamnetin in phytopharmaceuticals of Hippophae rhamnoides L. by high-performance liquid chromatography with chemiluminescence detection. J Sep Sci. 2005;28:1171–8.PubMedCrossRefGoogle Scholar
  33. 33.
    LaCourse WR, Modi SJ. Microelectrode applications of pulsed electrochemical detection. Electroanalysis. 2005;17:1141–52.CrossRefGoogle Scholar
  34. 34.
    Jean-Luc W. HPLC in natural product analysis: the detection issue. Planta Med. 2009;75(7):719–34.CrossRefGoogle Scholar
  35. 35.
    Skrinjar M, Kolar MH, Jelsek N, Hras AR, Bezjak M, Knez Z. Application of HPLC with electrochemical detection for the determination of low levels of antioxidants. J Food Compos Anal. 2007;20:539–45.CrossRefGoogle Scholar
  36. 36.
    Chan KL, Yuen KH, Jinadasa S, Peh KK, Toh WT. A high-performance liquid chromatography analysis of plasma artemisinin using a glassy carbon electrode for reductive electrochemical detection. Planta Med. 1997;63:66–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Joo KM, Park CW, Jeong HJ, Lee SJ, Chang IS. Simultaneous determination of two amadori compounds in Korean red ginseng (Panax ginseng) extracts and rat plasma by high-performance anion-exchange chromatography with pulsed amperometric detection. J Chromatogr B. 2008;865:159–66.CrossRefGoogle Scholar
  38. 38.
    Tiselius A, Claesson S. Adsorption analysis by means of interferometric study. Arkiv Kemi Minearl Geol. 1942;15:1–6.Google Scholar
  39. 39.
    Ford DL, Kennard W. Vaporization analyzer. J Oil Colour Chem Assoc. 1966;49:299–313.Google Scholar
  40. 40.
    Megoulas NC, Koupparis MA. Twenty years of evaporative light scattering detection. Crit Rev Anal Chem. 2005;35:301–16.CrossRefGoogle Scholar
  41. 41.
    Guillarme D, Rudaz S, Schelling C, Dreux M, Veuthey JL. Micro liquid chromatography coupled with evaporative light scattering detector at ambient and high temperature: optimization of the nebulization cell geometry. J Chromatogr A. 2008;1192:103–12.PubMedCrossRefGoogle Scholar
  42. 42.
    Dubber MJ, Kanfer I. Determination of terpene trilactones in Ginkgo biloba solid oral dosage forms using HPLC with evaporative light scattering detection. J Pharm Biomed Anal. 2006;41:135–40.PubMedCrossRefGoogle Scholar
  43. 43.
    Vervoort N, Daemen D, Torok G. Performance evaluation of evaporative light scattering detection and charged aerosol detection in reversed phase liquid chromatography. J Chromatogr A. 2008;1189:92–100.PubMedCrossRefGoogle Scholar
  44. 44.
    Gorecki T, Lynen F, Szucs R, Sandra P. Universal response in liquid chromatography using charged aerosol detection. Anal Chem. 2006;78:3186–92.PubMedCrossRefGoogle Scholar
  45. 45.
    Li P, Zeng LJ, Lin G. The extraction of imperialine and imperialine-3 beta-glucoside from Fritillaria pallidiflora Schrenk and quantitative determination by HPLC-evaporative light scattering detection. Phytochem Anal. 2002;13:158–61.PubMedCrossRefGoogle Scholar
  46. 46.
    Kim SN, Ha YW, Shin H, Son SH, Wu SJ, Kim YS. Simultaneous quantification of 14 ginsenosides in Panax ginseng C.A. Meyer (Korean red ginseng) by HPLC-ELSD and its application to quality control. J Pharm Biomed Anal. 2007;45:164–70.PubMedCrossRefGoogle Scholar
  47. 47.
    Schaneberg BT, Molyneux RJ, Khan IA. Evaporative light scattering detection of pyrrolizidine alkaloids. Phytochem Anal. 2004;15:36–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Cremin PA, Zeng L. High-throughput analysis of natural product compound libraries by parallel LC-MS evaporative light scattering detection. Anal Chem. 2002;74:5492–500.PubMedCrossRefGoogle Scholar
  49. 49.
    Dixon RW, Peterson DS. Development and testing of a detection method for liquid chromatography based on aerosol charging. Anal Chem. 2002;74:2930–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Gamache PH, McCarthy RS, Freeto SM, Asa DJ, Woodcock MJ, Laws K, et al. HPLC analysis of non-volatile analytes using charged aerosol detection. Lc Gc Eur. 2005;18:345–9.Google Scholar
  51. 51.
    Smith RM. Superheated water chromatography – a green technology for the future. J Chromatogr A. 2008;1184:441–55.PubMedCrossRefGoogle Scholar
  52. 52.
    Guillarme D, Heinisch S. Detection modes with high temperature liquid chromatography – a review. Sep Purif Rev. 2005;34:181–216.CrossRefGoogle Scholar
  53. 53.
    Korfmacher WA. Principles and applications of LC-MS in new drug discovery. Drug Discov Today. 2005;10:1357–67.PubMedCrossRefGoogle Scholar
  54. 54.
    He XG. On-line identification of phytochemical constituents in botanical extracts by combined high-performance liquid chromatographic-diode array detection-mass spectrometric techniques. J Chromatogr A. 2000;880:203–32.PubMedCrossRefGoogle Scholar
  55. 55.
    Pisitkun T, Hoffert JD, Yu MJ, Knepper MA. Tandem mass spectrometry in physiology. Physiology. 2007;22:390–400.PubMedCrossRefGoogle Scholar
  56. 56.
    Williamson LN, Bartlett MG. Quantitative liquid chromatography/time-of-flight mass spectrometry. Biomed Chromatogr. 2007;21:567–76.PubMedCrossRefGoogle Scholar
  57. 57.
    Jessome LL, Volmer DA. Ion suppression: a major concern in mass spectrometry. Lc Gc N Am. 2006;24:83–9.Google Scholar
  58. 58.
    Syage JA, Short LC, Cai SS. Atmospheric pressure photoionization – the second source for LC-MS? Lc Gc N Am. 2008;26:286–300.Google Scholar
  59. 59.
    Duckett CJ, Lindon JC, Walker H, Abou-Shakra F, Wilson ID, Nicholson JK. Metabolism of 3-chloro-4-fluoroaniline in rat using [C-14]-radiolabelling, F-19-NMR spectroscopy, HPLC-MS/MS, HPLC-ICPMS and HPLC-NMR. Xenobiotica. 2006;36:59–77.PubMedCrossRefGoogle Scholar
  60. 60.
    Elswijk DAV, Irth H. Analytical tools for the detection and characterization of biologically active compounds from nature. Phytochem Rev. 2003;1:427–39.CrossRefGoogle Scholar
  61. 61.
    Wilson ID, Brinkman UAT. Hype and hypernation: multiple hyphenation of column liquid chromatography and spectroscopy. Trends Anal Chem. 2007;26:847–54.CrossRefGoogle Scholar
  62. 62.
    Jaroszewski JW. Hyphenated NMR methods in natural products research, part 1: direct hyphenation. Planta Med. 2005;71:691–700.PubMedCrossRefGoogle Scholar
  63. 63.
    Clarkson C, Madikane EV, Hansen SH, Smith PJ, Jaroszewski JW. HPLC-SPE-NMR characterization of sesquiterpenes in an antimycobacterial fraction from Warburgia salutaris. Planta Med. 2007;73:578–84.PubMedCrossRefGoogle Scholar
  64. 64.
    Lambert M, Wolfender JL, Staerk D, Christensen B, Hostettmann K, Jaroszewski JW. Identification of natural products using HPLC-SPE combined with CapNMR. Anal Chem. 2007;79:727–35.PubMedCrossRefGoogle Scholar
  65. 65.
    Larsen TO, Hansen MAE. Dereplication and discovery of natural products by UV spectroscopy. In: Colegate SM, Molyneux RJ, editors. Bio-active natural products: detection, isolation, and structural determination. 2nd ed. London: CRC Press; 2008. p. 221–44.Google Scholar
  66. 66.
    Romani A, Vignolini P, Isolani L, Ieri F, Heimler D. HPLC-DAD/MS characterization of flavonoids and hydroxycinnamic derivatives in turnip tops (Brassica rapa L. subsp. sylvestris L.). J Agric Food Chem. 2006;54(4):1342–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Wolfender JL, Queiroz EF, Hostettmann K. Phytochemistry in the microgram domain – a LC-NMR perspective. Magn Reson Chem. 2005;43:697–709.PubMedCrossRefGoogle Scholar
  68. 68.
    Akarasereenont P, Thitilertdecha P, Chotewuttakorn S, Palo T, Seubnooch P, Wattanarangsan J, et al. Chromatographic fingerprint development for quality assessment of “Ayurved Siriraj Prasachandaeng” antipyretic drug. Siriraj Med. 2010;62(1):4–8.Google Scholar
  69. 69.
    Cimpan G, Gocan S. Analysis of medicinal plants by HPLC: recent approaches. J Liq Chromatogr Relat Technol. 2002;25(13):2225–92.CrossRefGoogle Scholar
  70. 70.
    Mauri P, Migliazza B, Pietta P. Liquid chromatography/electrospray mass spectrometry of bioactive terpenoids in Ginkgo biloba L. J Mass Spectrom. 1999;34(12):1361–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Lacey ME, Tan ZJ, Webb AG, Sweedler JV. Union of capillary high-performance liquid chromatography and microcoil nuclear magnetic resonance spectroscopy applied to the separation and identification of terpenoids. J Chromatogr A. 2001;922:139–49.PubMedCrossRefGoogle Scholar
  72. 72.
    Bauer R, Remiger P. TLC and HPLC analysis of alkamides in Echinacea drug. Planta Med. 1989;55:367–71.PubMedCrossRefGoogle Scholar

Bibliography

  1. Bindseil KU, Jakupovic J, Wolf D, Lavayre J, Leboul J, Van der Pyl D. Pure compound libraries; a new perspective for natural product based drug discovery. Drug Discov Today. 2001;6(16):840–7.PubMedCrossRefGoogle Scholar
  2. Deli J, Matus Z, Toth G. Comparative study on the carotenoid composition in the buds and flowers of different Aesculus species. Chromatographia. 2000;51(Suppl):S179–82.CrossRefGoogle Scholar
  3. Dillard CJ, German JB. Phytochemicals: nutraceuticals and human health. J Sci Food Agric. 2000;80:1744–56.CrossRefGoogle Scholar
  4. Glasl S, Gunbilig D, Narantuya S, Werner I, Jurenitsc J. Combination of chromatographic and spectroscopic methods for the isolation and characterization of polar guaianolides from Achillea asiatica. J Chromatogr A. 2001;936:193–200.PubMedCrossRefGoogle Scholar
  5. Grabley S, Thiericke R. Bioactive agents from natural sources: trends in discovery and application. Adv Biochem Eng Biotechnol. 1999;64:101–54.PubMedGoogle Scholar
  6. Gu L, Gu W. Characterisation of soy isoflavones and screening of novel malonyl glycosides using high-performance liquid chromatography- electrospray ionisation-mass spectrometry. Phytochem Anal. 2001;12:377–82.PubMedCrossRefGoogle Scholar
  7. Herrmann K. Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit Rev Food Sci Nutr. 1989;28:315–47.PubMedCrossRefGoogle Scholar
  8. Kim ND, Mehta R, Yu W, Neeman I, Livney T, Amichay A, Poirier D, Nicholls P, Kirby A, Jiang W, Mansel R, Ramachandran C, Rabi T, Kaplan B, Lansky E. Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer. Breast Cancer Res Treat. 2002;71(3):203–17.PubMedCrossRefGoogle Scholar
  9. Lutz ESM, Irth H, Tjaden UR, Van der Greef J. Applying hollow fibres for separating free and bound label in continuous flow immunochemical detection. J Chromatogr A. 1996;755(2):179–87.PubMedCrossRefGoogle Scholar
  10. Mueller-Harvey I. Analysis of hydrolysable tannins. Anim Feed Sci Technol. 2001;91:3–20.CrossRefGoogle Scholar
  11. Oosterkamp AJ, Irth H, Tjaden UR, Vander-Greef J. On-line coupling of liquid chromatography to biochemical assays based on fluorescent-labeled ligands. Anal Chem. 1994;66(23):4295–301.CrossRefGoogle Scholar
  12. Rashid MA, Gustafson KR, Crouch RC, Groweiss A, Pannell LK, Van ON, Boyd NR. Application of high-field NMR and cryogenic probe technologies in the structural elucidation of poecillastrin a, a new antitumor macrolide lactam from the sponge Poecillastra species. Org Lett. 2002;4(19):3293–6.PubMedCrossRefGoogle Scholar
  13. Schofield P, Mbugua DM, Pell AN. Analysis of condensed tannins: a review. Anim Feed Sci Technol. 2001;91:21–40.CrossRefGoogle Scholar
  14. Swatsitang P, Tucker G, Robards K, Jardine D. Isolation and identification of phenolics compounds in Citrus sinensis. Anal Chim Acta. 2000;417:231–40.CrossRefGoogle Scholar
  15. Weber L. High-diversity combinatorial libraries. Curr Opin Chem Biol. 2000;4(3):295–302.PubMedCrossRefGoogle Scholar
  16. Zani CL, Alves TMA, Queiroz R, Fontes ES, Shin YG, Cordell GA. A cytotoxic diterpene from Alomia myriadenia. Phytochemistry. 2000;53:877–80.PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2012

Authors and Affiliations

  1. 1.Amity Institute of Phytochemistry & PhytomedicineAmity University, Uttar PradeshNoidaIndia

Personalised recommendations