Skip to main content

The Sato–Tate Conjecture for the Ramanujan τ-Function

  • Chapter
  • First Online:
The Mathematical Legacy of Srinivasa Ramanujan
  • 2331 Accesses

Abstract

Ramanujan’s 1916 conjecture that |τ(p)|≤2p 11/2 was proved in 1974 by P. Deligne, as a consequence of his work on the Weil conjectures. Serre, and later Langlands, discussed the possible distribution of the τ(p)/2p 11/2 in the interval [−1,1] as p varies over the prime numbers. Inspired by the Sato–Tate conjecture in the theory of elliptic curves, Serre predicted an identical distribution law (the “semi-circular” law). This conjecture was proved recently by Barnet-Lamb, Geraghty, Harris, and Taylor. In this chapter, we give a sketch of how their proof works. We also indicate some lines of future development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Akiyama, Y. Tanigawa, Calculation of values of L-functions associated to elliptic curves. Math. Comp. 68(227), 1201–1231 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Arthur, L. Clozel, Simple Algebras, Base Change and the Advanced Theory of the Trace Formula. Annals of Mathematics Studies, vol. 120 (Princeton University Press, Princeton, 1989)

    MATH  Google Scholar 

  3. E. Artin, Quadratische Körper im Gebiete der Höheren kongruenzen, I, II. Math. Z. 19, 153–246 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Barnet-Lamb, D. Geraghty, T. Gee, The Sato–Tate conjecture for Hilbert modular forms. J. Am. Math. Soc. 24(2), 411–469 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Barnet-Lamb, D. Geraghty, M. Harris, R. Taylor, A family of Calabi–Yau varieties and potential automorphy, II. Publ. Res. Inst. Math. 47, 29–98 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over \(\mathbb{Q}\): wild 3-adic exercises. J. Am. Math. Soc. 14(4), 843–939 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Carayol, La conjecture de Sato–Tate (d’après Clozel, Harris, Shepherd-Barron, Taylor), Sem. Bourbaki 59(977) (2006–2007)

    Google Scholar 

  8. L. Clozel, M. Harris, R. Taylor, Automorphy of some -adic lifts of automorphic mod Galois representations. Publ. Math. IHES 108(1), 1–182 (2008)

    MathSciNet  MATH  Google Scholar 

  9. J. Cogdell, H. Kim, M.R. Murty, Lectures on Automorphic L-functions (Am. Math. Soc., Providence, 2004)

    Google Scholar 

  10. J. Cogdell, P. Michel, On the complex moments of symmetric power L-functions at s=1. Int. Math. Res. Not. 31, 1561–1617 (2004)

    Article  MathSciNet  Google Scholar 

  11. P. Deligne, La conjecture de Weil, I. Publ. Math. IHES 43, 273–307 (1974)

    MathSciNet  Google Scholar 

  12. P. Deligne, La conjecture de Weil, II. Publ. Math. IHES 52, 138–252 (1980)

    Google Scholar 

  13. M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Zem. Hansischen Univ. 14, 197–272 (1941)

    Article  MathSciNet  Google Scholar 

  14. G. Frei, P. Roquette, Emil Artin and Helmut Hasse, Die Korrespondenz 1923–1934 (Universitätsverlag, Göttingen, 2008)

    MATH  Google Scholar 

  15. G. Frey, Links between solutions of AB=C and elliptic curves. Lect. Notes Math. 1380, 31–62 (1989)

    Article  MathSciNet  Google Scholar 

  16. S. Gelbart, H. Jacquet, A relation between automorphic forms on GL(2) and GL(3). Proc. Natl. Acad. Sci. USA 73, 3348–3350 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Grothendieck, The cohomology theory of abstract algebraic varieties. Proc. Int. Congr. Math. Edinburgh, 103–118 (1958)

    Google Scholar 

  18. M. Harris, N. Shepherd-Barron, R. Taylor, A family of Calabi–Yau varieties and potential automorphy. Preprint available at www.math.harvard.edu/~rtaylor

  19. H. Hasse, Beweis des Analogons der Riemannschen Vermutung für die Artinschen und F.K. Shmidtschen Kongruenzzetafunktionen in gewissen zykischen Fällen, Vorläufige Mitteilung. Nachr. Ges. Wiss. Göttingen I. Math.-Phys. Kl. Fachgr. I Math. 42, 253–262 (1933)

    Google Scholar 

  20. E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzalhen, I. Math. Z. 1, 357–376 (1918)

    Article  MathSciNet  Google Scholar 

  21. E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, II. Math. Z. 6, 11–51 (1920)

    Article  MathSciNet  Google Scholar 

  22. H. Jacquet, J. Shalika, A non-vanishing theorem for zeta functions of GL n . Invent. Math. 38(1), 1–16 (1976/77)

    Article  MathSciNet  Google Scholar 

  23. C. Khare, Serre’s modularity conjecture: the level one case. Duke Math. J. 134(3), 557–589 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Khare, J.-P. Wintenberger, Serre’s modularity conjecture, I and II. Invent. Math. 178(3), 485–504 (2009) (and 505–586)

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Kim, F. Shahidi, Functorial products for GL 2×GL 3 and functorial symmetric cube for GL 2. C. R. Acad. Sci. Paris Sér. I Math. 331(8), 599–604 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Lang, Elliptic Functions, 2nd edn. (Springer, New York, 1987)

    Book  MATH  Google Scholar 

  27. R. Langlands, Problems in the theory of automorphic forms, in Lectures in Modern Analysis and Applications, ed. by R. Dudley, Springer Lecture Notes in Mathematics, vol. 170 (1970), pp. 18–86

    Chapter  Google Scholar 

  28. B. Mazur, Controlling our errors. Nature 443, 38–40 (2006)

    Article  Google Scholar 

  29. B. Mazur, Finding meaning in error terms. Bull. Am. Math. Soc. 45, 185–228 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. M.R. Murty, Recent developments in the Langlands program. C. R. Math. Rep. Sci. Canada 24(2), 33–54 (2002)

    MATH  Google Scholar 

  31. V.K. Murty, On the Sato–Tate conjecture, in Number Theory Related to Fermat’s Last Theorem. Cambridge, MA, 1981. Progress in Mathematics, vol. 26 (Birkhäuser, Boston, 1982), pp. 195–205

    Google Scholar 

  32. V.K. Murty, Explicit formulae and the Lang–Trotter conjecture. Rocky Mt. J. Math. 15(2), 535–551 (1985)

    Article  MATH  Google Scholar 

  33. K. Ribet, From the Taniyama–Shimura conjecture to Fermat’s last theorem. Ann. Fac. Sci. Toulouse Ser. 5 11(1), 116–139 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. P. Sarnak, Non-vanishing of L-functions on ℜ(s)=1, in Contributions to Automorphic Forms, Geometry, and Number Theory (Johns Hopkins University Press, Baltimore, 2004), pp. 719–732

    Google Scholar 

  35. J.-P. Serre, Sur les répresentations modulaires de degré 2 de \(\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\). Duke Math. J. 54, 179–230 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. J.-P. Serre, Abelian ℓ-Adic Representations and Elliptic Curves. Research Notes in Mathematics, vol. 7 (AK Peters, Wellesley, 1998)

    Google Scholar 

  37. F. Shahidi, On certain L-functions. Am. J. Math. 103, 297–355 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  38. G. Shimura, On the holomorphy of certain Dirichlet series. Proc. Lond. Math. Soc. (3) 31(1), 79–98 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Tate, Algebraic cycles and poles of zeta functions, in Arithmetic Algebraic Geometry, ed. by F.G. Schilling (Harper & Row, New York, 1965), pp. 93–110

    Google Scholar 

  40. R. Taylor, Automorphy of some -adic lifts of automorphic mod representations, II. Publ. Math. IHES 108(1), 183–239 (2008)

    MATH  Google Scholar 

  41. A. Weil, Dirichlet Series and Automorphic Forms. Springer Lecture Notes, vol. 189, (Springer, Berlin, 1971)

    MATH  Google Scholar 

  42. A. Weil, Two lectures on number theory, past and present. Enseign. Math. 20, 87–110 (1974)

    MathSciNet  MATH  Google Scholar 

  43. A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. of Math. 141(3), 443–551 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  44. H. Yoshida, An analogue of the Sato–Tate conjecture. Invent. Math. 19, 261–277 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Murty, M.R., Murty, V.K. (2013). The Sato–Tate Conjecture for the Ramanujan τ-Function. In: The Mathematical Legacy of Srinivasa Ramanujan. Springer, India. https://doi.org/10.1007/978-81-322-0770-2_12

Download citation

Publish with us

Policies and ethics