Skip to main content

Part of the book series: SpringerBriefs in Statistics ((BRIEFSSTATIST))

  • 2365 Accesses

Abstract

We discuss stationary AR and ARMA time series models for sequences of integer-valued random variables and continuous random variables. Stationary distribution of these models is non-Gaussian. Such models can be broadly described as extensions of Gaussian ARMA models, which have been very widely discussed in the time series literature. These non-Gaussian AR models share two important properties with a linear AR(1) model: (i) the conditional expectation of \(X_t\) is a linear function of the past observation and (ii) the auto-correlation function (ACF) has an exponential decay. However, the conditional variance of an observation is frequently a function of the past observations. These models are formed so as to have a specific form of the stationary distribution. Stationary distributions include standard discrete distributions such as binomial, geometric, Poisson, and continuous distributions such as exponential, Weibull, gamma, inverse Gaussian, and Cauchy. In some cases, maximum likelihood estimation is tractable. In other cases, regularity conditions are not met. Estimation is then carried out based on properties of the marginal distribution of the process and mixing properties such as strong or \(\phi \)-mixing are useful to derive properties of the estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham, B., Balakrishna, N.: Inverse gaussian autoregressive models. J. Time Ser. Anal. 20, 605–618 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Adke, S.R., Balakrishna, N.: Estimation of the mean in some stationary Markov sequences. Commun. Stat. Theor. Methods 21, 137–160 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Osh, M.A., Alzaid, A.A.: First order integer valued auto-regressive (INAR(1)) process. J. Time Ser. Anal. 8, 261–275 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Osh, M.A., Alzaid, A.A.: Integer valued moving average (INMA) process. Statistical Hefte 29, 281–300 (1988)

    MathSciNet  MATH  Google Scholar 

  • Al-Osh, M.A., Alzaid, A.A.: Binomial auto-regressive moving average models. Commun. Stat. Stoch. Model 7, 261–282 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Osh, M.A., Alzaid, A.A.: First order auto-regressive time series with negative binomial and geometric marginals. Commun. Stat. Theor. Methods 21, 2483–2492 (1992)

    Article  MATH  Google Scholar 

  • Alzaid, A.A., Al-Osh, M.A.: An integer-valued p-th order auto-regressive structure(INAR(p)) process. J. Appl. Probab. 27, 314–324 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Arnold, B.C., Hallett, J.T.: A characterization of the pareto process among stationary stochastic processes of the form \(X_n= min(X_{n-1}, Y_n)\). Stat. Probab. Lett. 8, 377–380 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Athreya, K.B., Pantula, G.S.: Mixing properties of harris chains and auto-regressive processes. J. Appl. Probab. 23, 880–892 (1986a)

    Article  MathSciNet  MATH  Google Scholar 

  • Athreya, K.B., Pantula, G.S.: A note on strong mixing ARMA processes. Stat. Probab. Lett. 4, 187–190 (1986b)

    Article  MathSciNet  MATH  Google Scholar 

  • Balakrishna, N., Jacob, T.M.: Parameter estimation in minification processes. Commun. Stat. Theor. Methods. 32, 2139–2152 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Balakrishna, N., Lawrence, A.J.: Development of product autoregressive models. J. Indian Stat. Assoc. 50, 1–22 (2012)

    Google Scholar 

  • Balakrishna, N., Nampoothiri, K.: A cauchy auto-regressive model and its applications. J. Indian Stat. Assoc. 41, 143–156 (2003)

    Google Scholar 

  • Balakrishna, N., Shiji, K.: A markovian weibull sequence generated by product autoregressive model and its statistical analysis. J. Indian Soc. Probab. Stat. 12, 53–67 (2010)

    Google Scholar 

  • Benjamin, M., Rigby, R., Stasinopoulos, M.: Generalized autoregressive moving average models. J. Am. Stat. Assoc. 98, 214–223 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Berchtold, A., Raftery, A.E.: Mixture transition distribution model for high-order markov chains and non-gaussian time series. Stat. Sci. 17, 328–356 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Block, H.W., Langberg, N.A., Stoffer, D.S.: Time series models for non-gaussian processes, In: Topics in Statistical Dependence, Lecture Notes-Monograph Series, vol. 16, pp. 69–83. Institute of Mathematical, Statistics, Hayward (1990).

    Google Scholar 

  • Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods. Springer, New York (1987)

    MATH  Google Scholar 

  • Cappé, O., Moulines, E., Ryden, T.: Inference in Hidden Markov Models. Springer, New York (2005)

    MATH  Google Scholar 

  • Drost, F.C., van den Akker, R., Werker, B.J.M.: Efficient estimation of auto-regressive parameters and innovation distribution for semi-parametric integer-valued AR(p) processes. J. Roy. Stat. Soc.: Ser. B, 71, 467–485 (2009).

    Google Scholar 

  • Du, J.D., Li, Y.: The integer-valued auto-regressive (INAR(p)) model. J. Time Ser. Anal. 12, 129–142 (2001)

    MathSciNet  Google Scholar 

  • Elliot, R.J., Aggaoun, L., Moore, J.B.: Hidden Markov Models: Estimation and Control. Springer, New York (1995)

    Google Scholar 

  • Fahrmeir, L., Tutz, G.: Multivariate statistical modeling based on generalized linear models. Springer, New York (2004)

    Google Scholar 

  • Feigin, P.D., Resnick, S.I.: Estimation of autoregressive processes with positive innovation. Commun. Stat. Stoch. Models 8, 479–498 (1992)

    MATH  Google Scholar 

  • Gaver, D.P., Lewis, P.A.W.: First-order autoregressive gamma sequences and point processes. Adv. Appl. Probab. 12, 727–745 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Jacobs, P.A., Lewis, P.A.W.: A mixed auto-regressive-moving-average exponential sequence and point process (EARMA(1,1)). Adv. Appl. Probab. 9, 87–104 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Jacobs, P.A., Lewis, P. A.W.: Discrete time series generated by mixtures I: correlational and run properties. J. Roy. Stat. Soc.: Ser. B, 40, 94–105 (1978a).

    Google Scholar 

  • Jacobs, P.A., Lewis, P.A.W.: Discrete time series generated by mixtures II: asymptotic properties. J. Roy. Statist. Soc.: Ser. B, 40, 222–228 (1978b).

    Google Scholar 

  • Jacobs, P.A., Lewis, P.A.W.: Stationary discrete auto-regressive-moving average time series generated by mixtures. J. Time Ser. Anal. 4, 19–36 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis, P.A.W., McKenzie, E.D.: Minification processes and their transformations. J. Appl. Probab. 28, 45–57 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • MacDonald, I., Zucchini, W.: Hidden Markov and Other Models for Discrete Valued Time Series. Chapman and Hall, London (1997)

    MATH  Google Scholar 

  • McCabe, B.P.M., Martin, G.M., Harris, D.: Efficient probabilistic forecasts for counts. J. Roy. Stat. Soc.: Ser. B 73, 239–252 (2011).

    Google Scholar 

  • McKenzie, E.: Some simple models for discrete variate time series. Water Res. Bull. 21, 645–650 (1985)

    Article  Google Scholar 

  • McKenzie, E.: ARMA processes with negative binomial and geometric marginals. Adv. Appl. Probab. 18, 679–705 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • McKenzie, E.: Some ARMA models for dependent sequences of poisson counts. Adv. Appl. Probab. 20, 822–835 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • McKenzie, E.: Discrete variate time series. In: Shanbhag, D.N., Rao, C.R. (eds.) Stochastic Processes: Modeling and Simulation Handbook of Statistics, vol. 21, pp. 573–606. North-Holland, Amsterdam (2003)

    Chapter  Google Scholar 

  • Pillai, R.N., Satheesh, S.: \(\alpha \)-inverse gaussian distributions. sankhyā A. 54, 288–290 (1992).

    Google Scholar 

  • Raftery, A.E., Tavare, S.: Estimating and modeling repeated patterns in high order markov chains with mixture transition distribution model. Appl. Stat. 43, 179–199 (1994)

    Article  MATH  Google Scholar 

  • Rajarshi, M.B.: Chi-squared type goodness of fit tests for stochastic models through conditional least squared estimation. J. Ind. Statist. Assoc. 24, 65–76 (1987)

    MathSciNet  Google Scholar 

  • Tavares, L.V.: An exponential markovian stationary processes. J. Appl. Probab. 17, 1117–1120 (1980), Addendum. J. Appl. Probab. 18, 957 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Weiß, C.H: A new class of autoregressive models for time series of binomial counts. Commun. Stat. Theor. Methods 38, 447–460 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Rajarshi .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Rajarshi, M.B. (2013). Non-Gaussian ARMA Models. In: Statistical Inference for Discrete Time Stochastic Processes. SpringerBriefs in Statistics. Springer, India. https://doi.org/10.1007/978-81-322-0763-4_3

Download citation

Publish with us

Policies and ethics