Phylogenetic Relationship Among the Indian Pandanus Species

  • Altafhusain Nadaf
  • Rahul Zanan


Taxonomy is a systematic classification of living organisms, whereas phylogeny is a theoretical model of the sequence of evolutionary divergence of organisms from their common ancestors. Phylogeny is derived from a combination of Greek words: phylon means stem and genesis means origin. It is the study of evolutionary relationships among organisms. Traditionally, morphology, anatomy, physiology, and paleontology are used to determine the phylogeny (Riley 2009). In Pandanaceae, the morphological characters used to describe species are mainly based on fruit. Further, characterization of the species requires a large set of phenotypic data that are difficult to access statistically and are variable due to environmental effects (Sedra et al. 1993, 1996, 1998). There are a number of DNA-based marker systems available for studying phylogeny. Unlike morphological markers, molecular markers are not prone to environmental influences and do portray the genetic relationship between plant groups (Powell 1992; Gottlieb 1977; Tanksley et al. 1989; McCouch and Tanksley 1991).


Morphological Character Nicobar Island Outgroup Taxon Single Nucleotide Change Small Single Copy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Avise JC (1986) Mitochondrial DNA and the evolutionary genetics of higher animals. Philos Trans R Soc Lond B Biol Sci 312:325–342PubMedCrossRefGoogle Scholar
  2. Avise JC (1994) The real message from Biosphere 2. Conserv Biol 8:327–329CrossRefGoogle Scholar
  3. Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522Google Scholar
  4. Bakker FT, Culham A, Daugherty LC, Gibby M (1999) A trnL-F based phylogeny for species of Pelargonium (Geraniaceae) with small chromosomes. Plant Syst Evol 216:309–324CrossRefGoogle Scholar
  5. Bayer RJ, Starr JR (1999) Tribal phylogeny of the Asteraceae based on two non-coding chloroplast sequences, the trnL intron and trnL/trnF intergenic spacer. Ann Missouri Bot Gard 85:242–256CrossRefGoogle Scholar
  6. Buerki S, Callmander MW, Devey DS, Chappell L, Gallaher T, Munzinger J, Haevermans T, Forest F (2012) Straightening out the screw-pines: a first step in understanding phylogenetic relationships within Pandanaceae. Taxon 61(5):1010–1020Google Scholar
  7. Callmander MW, Chassot P, Kupfer P, Lowry PP (2003) Recognition of Martellidendron, a new genus of Pandanaceae, and its bio-geographic implication. Taxon 52:747–762CrossRefGoogle Scholar
  8. Callmander MW, Lowry PP II, Forest F, Devey DS, Beentje H, Buerki S (2012) Benstonea Callm. & Buerki (Pandanaceae): characterization, circumscription, and distribution of a new genus of screw-pines, with a synopsis of accepted species. Candollea 67(2):323–345Google Scholar
  9. Cech TR (1988) Conserved sequences and structures of group I introns: building an active site for RNA catalysis – a review. Gene 73:259–271PubMedCrossRefGoogle Scholar
  10. Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duval MR, Price RA, Hills HG, Qiu Y-L, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michael HJ, Kress WJ, Karol KG, Clark WD, Hedren M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH Jr, Graham SW, Barrett SCH, Dayanandan S, Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Missouri Bot Gard 80:528–580CrossRefGoogle Scholar
  11. Chiang TY, Schaal BA, Peng CI (1998) Universal primers for amplification and sequencing a noncoding spacer between the atpB and rbcL genes of chloroplast DNA. Bot Bull Acad Sin 39:245–250Google Scholar
  12. Clegg MT, Zurawski G (1992) Chloroplast DNA and the study of plant phylogeny: present status and future prospects. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematic of plants. Chapman and Hall, New YorkGoogle Scholar
  13. Compton JA, Culham A, Jury S (1998) Reclassification of Actaea to include Cimicifuga and Souliea (Ranunculaceae): phylogeny inferred from morphology, nrDNA ITS and cpDNA trnL-F sequence variation. Taxon 47:593–634CrossRefGoogle Scholar
  14. Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small amount of fresh leaf tissue. Phytochem Bull 5:547–555Google Scholar
  15. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Statist 7:1–26CrossRefGoogle Scholar
  16. Farris JS (1983) The logical basis of phylogenetic systematics. In: Platnick NI, Funk VA (eds) Advances in cladistics. Columbia University Press, New York, pp 7–36Google Scholar
  17. Felsenstein J (1983) Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst 14:313–333CrossRefGoogle Scholar
  18. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  19. Felsenstein J (2004) PHYLIP (Phylogeny Inference Package) version 3.68. Department of Genetics, University of Washington, SeattleGoogle Scholar
  20. Fitch WM (1971) Toward defining the course of evolution: minimal change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  21. Gottlieb LD (1977) Electrophoretic evidence and plant systematics. Ann Missouri Bot Gard 64:161–180CrossRefGoogle Scholar
  22. Hao B, Qi J (2003) Prokaryote phylogeny without sequence alignment: from avoidance signature to composition distance. In: Proceedings of the 2003 IEEE bioinformatics conference, IEEE Computer Society Washington, DC, pp 375–385Google Scholar
  23. Harrison RG (1989) Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol Evol 4:6–11PubMedCrossRefGoogle Scholar
  24. Henry AN, Chithra V, Balakrishnan AN (1989) Flora of Tamil Nadu, India, vol III, Series 1, Analysis. Botanical Survey of India, Southern Circle, Coimbatore, 54Google Scholar
  25. Hillis DM, Wiens JJ (2000) Molecules versus morphology in systematics: conflicts, artifacts, and misconceptions. In: Wiens JJ (ed) Phylogenetic analysis of morphological data. Smithsonian Institution Press, Washington, DC, pp 1–19Google Scholar
  26. Hillis DM, Moritz C, Mable BK (eds) (1996) Molecular systematics. Sinauer Associates, Inc., SunderlandGoogle Scholar
  27. Hilu KW, Borsch T, Muller K, Soltis DE, Soltis PS, Savolainen V, Chase MW, Powell MP, Alice LA, Evans R, Sauquet H, Neinhuis C, Slotta TAB, Rohwer JG, Campbell CS, Chatrou LW (2003) Angiosperm phylogeny based on matK sequence information. Am J Bot 90:1758–1776PubMedCrossRefGoogle Scholar
  28. Holder M, Lewis PO (2003) Phylogeny estimation: traditional and Bayesian approaches. Nat Rev Genet 4:275–284PubMedCrossRefGoogle Scholar
  29. Huelsenbeck JP, Ronquist FR, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314PubMedCrossRefGoogle Scholar
  30. Johnson LA, Soltis DE (1994) matK DNA-Sequences and phylogenetic reconstruction in Saxifragaceae S-Str. Syst Bot 19:143–156CrossRefGoogle Scholar
  31. Johnson LA, Soltis DE (1995) Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann Missouri Bot Gard 82:149–175CrossRefGoogle Scholar
  32. Källersjö M, Farris JS, Chase MW, Bremer B, Fay MF, Humphries CJ, Petersen G, Seberg OL, Bremer K (1998) Simultaneous parsimony jackknife analysis of 2538 rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants. Plant Syst Evol 213:259–287CrossRefGoogle Scholar
  33. Karthikeyan SK, Jain SK, Nayar MP, Sanjappa M (1989) Flora of India, Series 4, Florae Indicae Enumeratio: Monocotyledonae. Botanical Survey of India, Calcutta, pp 177–178Google Scholar
  34. Keller J (2001) Pandanaceae. In: Hanelt P, Institute of Plant Genetics and Crop Plant Research (eds) Mansfield’s encyclopedia of agricultural and horticultural crops, vol 5. Springer, Berlin, pp 2816–2824Google Scholar
  35. Kim KJ, Jansen RK (1995) ndhF sequence evolution and the major clades in the sunflower family. Proc Natl Acad Sci USA 92:10379–10383PubMedCrossRefGoogle Scholar
  36. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  37. Kranz HD, Huss VAR (1996) Molecular evolution of ferns and allies, and their relationship to seed plants: evidence from complete 18 S rRNA gene sequences. Plant Syst Evol 202:1–11CrossRefGoogle Scholar
  38. Kranz HD, Miks D, Siegler M-L, Capesius I, Sensen CHW, Huss VA (1995) The origin of land plants: phylogenetic relationships between Charophytes, Bryophytes, and vascular plants inferred from complete small subunit ribosomal RNA gene sequences. J Mol Evol 41:74–84PubMedCrossRefGoogle Scholar
  39. Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16:750–759CrossRefGoogle Scholar
  40. Manhart JR (1994) Phylogenetic analysis of green plant rbcL sequences. Mol Phyl Evol 3:114–127CrossRefGoogle Scholar
  41. Mauro DS, Agorreta A (2010) Molecular systematics: a synthesis of the common methods and the state of knowledge. Cell Mol Biol Lett 15:311–341CrossRefGoogle Scholar
  42. McCouch SR, Tanksley SD (1991) Development and use of restriction fragment length polymorphism in rice breeding and genetics. In: Khush GS, Toenniessen GH (eds) Rice biotechnology. CAB International and IRRI, Wallingford/Oxon/Manila, pp 109–133Google Scholar
  43. McDade LA, Moody ML (1999) Phylogenetic relationships among Acanthaceae: evidence from non-coding trnL-trnF chloroplast DNA sequences. Am J Bot 86:70–80PubMedCrossRefGoogle Scholar
  44. Michel F, Dujon B (1983) Conservation of RNA secondary structures in two intron families including mitochondrial, chloroplast and nuclear-encoded members. EMBO J 2:33–38PubMedGoogle Scholar
  45. Moritz C, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA relevance for population biology and systematics. Annu Rev Ecol Syst 18:269–292CrossRefGoogle Scholar
  46. National Center for Biotechnology Information. Access on 26 Mar 2012
  47. National Center for Biotechnology Information. Access on 26 Mar 2012
  48. Nickrent DL, Soltis DE (1995) A comparison of angiosperm phylogenies from nuclear 18 s rDNA and rbcL sequences. Ann Missouri Bot Gard 82:208–234CrossRefGoogle Scholar
  49. Olmstead RG, Reeves PA (1995) Evidence for the polyphyly of the Scrophulariaceae based on chloroplast rbcL and ndhF sequences. Ann Missouri Bot Gard 82:176–193CrossRefGoogle Scholar
  50. Palmer JD (1985a) Comparative organization of chloroplast genomes. Annual Rev Genet 19:325–354CrossRefGoogle Scholar
  51. Palmer JD (1985b) Chloroplast DNA and molecular phylogeny. Bioessays 2:263–267CrossRefGoogle Scholar
  52. Palmer JD (1992) Mitochondrial DNA in plant systematics: applications and limitations. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman & Hall, New York, pp 36–49CrossRefGoogle Scholar
  53. Pirie MD, Vargas MPB, Botermans M, Bakker FT, Chatrou LW (2007) Ancient paralogy in the cpDNA trnL–F region in Annonaceae: implications for plant molecular systematics. Am J Bot 94:1003–1016PubMedCrossRefGoogle Scholar
  54. Powell W (1992) Plant genomes, gene markers and linkage maps. In: Moss JP (ed) Biotechnology and crop improvement in Asia. ICRISAT, Hyderabad, pp 297–322Google Scholar
  55. Qiu YQ, Palmer JD (1998) Phylogeny of early land plants: insights from genes and genomes. Trends Plant Sci 4:26–30CrossRefGoogle Scholar
  56. Quandt D, Müller K, Stech M, Frahm J-P, Frey W, Hilu KW, Borsch T (2004) Molecular evolution of the chloroplast trnL-F region in land plants. Monogr Syst Bot Missouri Bot Gard 98:13–37Google Scholar
  57. Rambaut A (2006) Figtree version 1.0, Institute of Evolutionary Biology, University of Edinburgh, UK. Available on
  58. Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311PubMedCrossRefGoogle Scholar
  59. Reijmers TH, Wehrens R, Daeyaert FD, Lewi PJ, Buydens LM (1999) Using genetic algorithms for the construction of phylogenetic trees: application to G-protein coupled receptor sequences. Biosystems 49:31–43PubMedCrossRefGoogle Scholar
  60. Richard D, Olivier G (2002) Fast and accurate phylogeny reconstruction algorithm based on the minimum-evolution principle. WABI2002, LNCS2452, pp 357–374Google Scholar
  61. Riley MC (2009) Significant pattern discovery in gene location and phylogeny. Ph.D. dissertation, University of WalesGoogle Scholar
  62. Robertson B, Myers G, Howard C, Brettin T, Bukh J, Gaschen B, Gojobori T, Maertens G, Mizokami M, Nainan O, Netesov S, Nishioka K, Shin-i T, Simmonds P, Smith D, Stuyver L, Weiner A (1998) Classification, nomenclature, and database development for hepatitis C virus (HCV) and related viruses: proposals for standardization. Arch Virol 143(12):2493–2503PubMedCrossRefGoogle Scholar
  63. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  64. Savolainen V, Chase MW, Hoot SB, Morton CM, Soltis DE, Bayer C, Fay MF, De Bruijn AY, Sullivan S, Qiu YL (2000) Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Syst Biol 49:306–362PubMedCrossRefGoogle Scholar
  65. Sedra MH, Filali HEL, Frira D (1993) Observations sur quelques caracteristiques phenotypiques et agronomiques du fruit des varieties et clones du palmier dattier selectionnes. Al Awamia 82:105–120Google Scholar
  66. Sedra MH, Filali HEL, Benzine A, Allaoui M, Nour S, Boussak Z (1996) La palmeraie dattiere marocaine: evaluation du patrimonie phenicicole. Fruits 1:247–259Google Scholar
  67. Sedra MH, Lashermes P, Trouslot P, Combes M, Hamon S (1998) identification and genetic diversity analysis of date palm (Phoenix dactylifera L.) varieties of Morocco using RAPD markers. Euphytica 103:75–82CrossRefGoogle Scholar
  68. Sharma DB, Karthikeyan S, Singh NP (1996) Flora of Maharashtra state, Monocotyledons. Botanical Survey of India, Calcutta, 206Google Scholar
  69. Shu TLDS (2004) Freycinetia Gaudichaud. Ann Sci Nat (Paris) 3:509. 1824. In: Ke LDS, Kun S, DeFilipps RA (eds) Flora of China, vol XXIII. Science press, Beijing, pp 127–128Google Scholar
  70. Soltis PS, Soltis DE (1990) Evolution of inbreeding and outcrossing in ferns and fern–allies. Plant Species Biol 5:1–11CrossRefGoogle Scholar
  71. Soltis DE, Soltis PS (1997) Phylogenetic relationships in Saxifragaceae sensu lato: a comparison of topologies based on 18 S rDNA and rbcL sequences. Am J Bot 84:504–522PubMedCrossRefGoogle Scholar
  72. Soltis DE, Soltis PS, Clegg MT, Durbin M (1990) rbcL sequence divergence and phylogenetic-relationships in Saxifragaceae sensu-lato. Proc Natl Acad Sci USA 87:4640–4644PubMedCrossRefGoogle Scholar
  73. Soltis DE, Morgan DR, Grable A, Soltis PS, Kuzoff R (1993) Molecular systematics of Saxifragaceae-sensu-stricto. Am J Bot 80:1056–1081CrossRefGoogle Scholar
  74. Soltis DE, Kuzoff RK, Conti E, Gornall R, Ferguson K (1996) matK and rbcL gene sequence data indicate that Saxifraga (Saxifragaceae) is polyphyletic. Am J Bot 83:371–382CrossRefGoogle Scholar
  75. Soltis DE, Soltis PS, Nickrent DL, Johnson LA, Hahn WJ, Hoot SB, Sweere JA, Kuzoff RK, Kron KA, Chase MW, Swensen SM, Zimmer EA, Chaw SM, Gillespie LJ, Kress WJ, Sytsma KJ (1997) Angiosperm phylogeny inferred from 18 S ribosomal DNA sequences. Ann Missouri Bot Gard 84:1–49CrossRefGoogle Scholar
  76. Soltis ED, Soltis PS (2000) Contribution of plant molecular systematics to studies of molecular evolution. Plant Mol Biol 42:45–75PubMedCrossRefGoogle Scholar
  77. Soltis DE, Kuzoff RK, Mort ME, Zanis M, Fishbein M, Hufford L, Koontz J, Arroyo MK (2001a) Elucidating deep-level phylogenetic relationships in Saxifragaceae using sequences for six chloroplastic and nuclear DNA regions. Ann Missouri Bot Gard 88:669–693CrossRefGoogle Scholar
  78. Soltis DE, Tago-Nakazawa M, Xiang QY, Kawano S, Murata J, Wakabayashi M, Hibsch-Jetter C (2001b) Phylogenetic relationships and evolution in Chrysosplenium (Saxifragaceae) based on matK sequence data. Am J Bot 88:883–893PubMedCrossRefGoogle Scholar
  79. St. John H (1972) The Indian species of Pandanus (section Rykia). Bot Mag Tokyo 85:241–262CrossRefGoogle Scholar
  80. Stone BC (1974) Towards an improved infrageneric classification in Pandanus (Pandanaceae). Bot Jahrb Syst 94:459–540Google Scholar
  81. Stone BC (1976) Pandanaceae. In: Saldanha CJ, Nicolson DH (eds) Flora of Hassan district Karnataka, India. Amerind Pub. Co, Calcutta, pp 777–781Google Scholar
  82. Stone BC (1981) Pandanaceae. In: Dassanayake MD, Fosberg FR (eds) A revised hand book to the flora of cylon, vol III. Oxford and IBH Pub. Co., New Delhi, pp 293–320Google Scholar
  83. Studier JA, Keppler KJ (1988) A note on the neighbor-joining algorithm of Saitou and Nei. Mol Biol Evol 5:729–731PubMedGoogle Scholar
  84. Swofford DL, Olse GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinnauer Associates, Sunderland, pp 407–514Google Scholar
  85. Taberlet P, Gielly L, Patou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109PubMedCrossRefGoogle Scholar
  86. Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Bio/Technology 7:257–264CrossRefGoogle Scholar
  87. Whelan S, Liò P, Goldman N (2001) Molecular phylogenetics: state-of-the-art methods for looking into the past. Trends Genet 17:262–272PubMedCrossRefGoogle Scholar
  88. White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322Google Scholar
  89. Witt CC (2004) Rates of molecular evolution and their application to neotropical avian biogeography. Ph.D. dissertation, Louisiana State UniversityGoogle Scholar
  90. Wolfe KH (1991) Protein coding gene in chloroplast DNA: compilation of nucleotide sequences, data base entries and rates of molecular evolution. In: Vasil K (ed) Cell culture and somatic cell genetics of plants, vol 7BI. Academic, San Diego, pp 467–482Google Scholar
  91. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substation vary greatly among plant mitochondrial, chloroplast and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058PubMedCrossRefGoogle Scholar
  92. Wolfe KH, Sharp PM, Li WH (1989) Rates of synonymous substitution in plant nuclear genes. J Mol Evol 29:208–211CrossRefGoogle Scholar
  93. Wu X, Wan XF, Xu D, Lin GH (2005) Whole genome phylogeny based on clustered signature string composition. In: Posters in 2005 IEEE computational systems bioinformatics conference (CSB2005), Stanford University, pp 53–54Google Scholar
  94. Xiaomeng W, Xiufeng W, Gang W, Dong X, Guohui L (2005) Phylogenetic analysis using complete signature information of whole genomes and clustered Neighbor-Joining method. Int J Bioinform Res Appl 2:219–248Google Scholar
  95. Yoganarasimhan SN, Subramanyam K, Razi BA (1981) Flora of Chikmagalur district, Karnataka. International Book Distributors, Dehra DunGoogle Scholar

Copyright information

© Springer India 2012

Authors and Affiliations

  • Altafhusain Nadaf
    • 1
  • Rahul Zanan
    • 1
  1. 1.Department of BotanyUniversity of PunePuneIndia

Personalised recommendations