An Effective User Interface Tool for Retrieval of Heart Sound and Murmurs

  • Kiran Kumari Patil
  • B. S. Nagabhushana
  • B. P. Vijaya Kumar
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 174)


The phonocardiogram (PCG) is an important biomedical signal of the heart of audio nature (heart sounds and murmurs) related to the contractile activity of the cardiohemic system and represents a recording of the heart sound signal. The audio retrieval problems are studied in audio information retrieval (AIR) or music information retrieval (MIR) systems and are modeled as feature vectors and employ the similarity measures for speech or music retrieval. We extend these content-based retrieval techniques exclusively for heart sounds and murmurs. In this paper, we propose a framework for audio modeling of heart sounds and murmurs using feature vectors (spectral, and perceptual) and implementation of content based heart sound and murmurs retrieval algorithms and auditory user interfaces for cardiologist, in which he/she can directly audio query and obtain the ranked heart and murmur audio files using similarity measures. The query results are displayed in a heart sound and murmur browser, where cardiologists not only visualize (temporal and frequency domain) the phonocardiography signals, but also listen and make effective clinical decisions. The preliminary results of the research work show 80% precision and good retrieval efficiency.


Feature Vector Discrete Cosine Transform Heart Sound Music Information Retrieval Musical Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rangayyan, R.M., Lehner, R.J.: Phonocardiogram Signal Analysis: A Review. Critical Reviews in Biomedical Engineering 15(3), 211–236 (1988)Google Scholar
  2. 2.
    Rangayyan, R.M.: Biomedical Signal Analysis: A Case- Study Approach. Wiley India Pvt. Ltd., New Delhi (2007)Google Scholar
  3. 3.
    Luisada, A.A., Portuluppi, F.: The Heart Sounds – New Facts and Their Clinical Implications. Praeger, New York (1982)Google Scholar
  4. 4.
    Foote, J.T.: Content-Based Retrieval of Music and Audio. In: Proc. SPIE, vol. 3229, pp. 138–147(1977)Google Scholar
  5. 5.
    Foote, J.: An overview of audio information retrieval. Multimedia Systems 7, 2–10 (1999)CrossRefGoogle Scholar
  6. 6.
    Foote, J.: Visualizing Music and Audio using Self- Similarity. In: Proc. ACM Multimedia 1999, pp. 77–80 (1999)Google Scholar
  7. 7.
    Ghias, A., Logan, J., Chamberlin, D., Smith, B.C.: Query By Humming. In: Proc. ACM Multimedia 1995, pp. 231–236 (1995)Google Scholar
  8. 8.
    Lu, L., You, H., Zhang, H.J.: A New Approach to Query by Humming in Music Retrieval. In: ICME 2001, Tokyo (August 2001)Google Scholar
  9. 9.
    Kosugi, N., Nishihara, Y., Kon’ya, S., Yamamuro, M., Kushima, K.: Let’s Search for Songs by Humming! In: Proc. ACM Multimedia 1999 (Part 2), p. 194 (1999)Google Scholar
  10. 10.
    Uitdenbogerd, A., Zobel, J.: Melodic Matching Techniques for Large Music Database. In: Proc. ACM Multimedia 1999, pp. 57–66 (1999)Google Scholar
  11. 11.
    Yoshitaka, A., Ichikawa, T.: A Survey on Content-Based Retrieval for Multimedia Databases. IEEE Trans. Knowledge and Data Engineering 11(1), 81–93 (1999)CrossRefGoogle Scholar
  12. 12.
    Wold, E., Blum, T., Keislar, D., Wheaton, J.: Content- Based Classification, Search and Retrieval of Audio. IEEE Multimedia 3(3), 27–36 (1996)CrossRefGoogle Scholar
  13. 13.
    Blum, T., Keislar, D., Wheaton, J., Wold, E.: Audio Databases with Content-Based Retrieval. In: Intelligent Multimedia Information Retrieval, pp. 113–135. AAAI Press, Menlo Park (1997)Google Scholar
  14. 14.
    Tzanetakis, G., Cook, P.: Audio Information Retrieval (AIR) Tools. In: International Symposium on Music Information Retrieval (2000)Google Scholar
  15. 15.
    Veltkamp, R.C., Tanase, M., Sent, D.: Features in content-based image retrieval systems: a survey. In: State-of-the-Art in Content-Based Image and Video Retrieval, pp. 97–124 (1999)Google Scholar
  16. 16.
    Yang, C.: Music Database Retrieval Based on Spectral Similarity. Stanford University Database Group Technical Report 2001-14 (2001)Google Scholar
  17. 17.
    Patil, K.K., Nagabhushan, B.S., Vijay Kumar, B.P.: Psychoacoustic Models for Heart Sounds. In: Meghanathan, N., Kaushik, B.K., Nagamalai, D. (eds.) CCSIT 2011 Part II. CCIS, vol. 132, pp. 556–563. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Patil, K.K., et al.: An Efficient Retrieval Technique for heart sounds using psychoacoustic similarity. In: IJEST (December 2010) (issue)Google Scholar
  19. 19.
    Tzanetakis, G., Cook, P.: Musical genre classification of audio signals. IEEE Trans. Speech Audio Process 10(5), 293–302 (2002)CrossRefGoogle Scholar
  20. 20.
    Foote, J., Cooper, M., Nam, U.: Audio retrieval by rhythmic similarity. In: Proc. Int. Symposium on Music Information Retrieval (ISMIR), pp. 265–266 (2002)Google Scholar
  21. 21.
    Zwicker, E., Fastl, H.: Psychoacoustics: Facts and Models. Springer, Berlin (1999)CrossRefGoogle Scholar
  22. 22.
    Logan, B.: Mel Frequency Cepstral Coefficients for Music Modelling. In: ISMIR (2000)Google Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • Kiran Kumari Patil
    • 1
  • B. S. Nagabhushana
    • 1
  • B. P. Vijaya Kumar
    • 1
  1. 1.Reva Institute of Technology and Management Kattegenhalli YelahankaBangaloreIndia

Personalised recommendations