Variation in Active Site Amino Residues of H1N1 Swine Flu Neuraminidase

  • G. Nageswara Rao
  • P. Srinivasarao
  • A. Apparao
  • T. K. Rama Krishna Rao
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 174)


In this paper, we report the variations of amino acid residues between H5N1 and H1N1 swine flu neuraminidase sequences at protein level. Random search in NCBI Flu database resulted in Canadian viral gene and analysis using blast technique revealed sites that are variant among sequences for which 3-dimensional structures were known. PDB summary database and multiple alignments were employed for validation of the results. Based on the mutations observed within active site region, homology derived model was constructed using swiss-pdb viewer. The residue variation observed was with respect to Tyr347 in H5N1 versus Asn344 in H1N1 neuraminidase sequence, which resulted in geometrical modification of ligand binding domain.


Active Site Region Residue Variation Terminal Sialic Acid Residue Neuraminidase Gene H1N1 Sequence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Olsen, C.W., Brown, I.H., Easterday, B.C., Reeth, K.V.: Diseases of swine By Straw, B.E., Taylor, D.J., Swine Influenza. ch. 28 , pp. 469–470Google Scholar
  2. 2.
  3. 3.
    AlKhawaja, S.: Consultant, Infectious Disease Physician. Ministry of Health Kingdom of Bahrain Medical Bulletin 31(2), 1–4 (2009)Google Scholar
  4. 4.
    Brown, D.: System set up after SARS epidemic was slow to alert global authorities (2009),
  5. 5.
    Chiu, S.S., Lau, Y.L., Chan, K.H., Wong, W.H.S., Peiris, J.S.M.: Influenza-related hospi-talizations among children in HongKong. N. Engl. J. Med. 347, 2097–2103 (2002)CrossRefGoogle Scholar
  6. 6.
    Monto, A.S.: The role of antivirals in the control of influenza. Vaccine 21, 1796–1800 (2003)CrossRefGoogle Scholar
  7. 7.
    Knox, C., Law, V., Jewison, T., Liu, P., Ly, S., Frolkis, A., Pon, A., Banco, K., Mak, C., Neveu, V., Djoumbou, Y., Eis-ner, R., Guo, A.C., Wishart, D.S.: DrugBank 3.0: a comprehensive resource for ’omics’ research on drugs. Nucleic Acids Res. 39(Database issue), D1035–D1041 (2011)Google Scholar
  8. 8.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000)CrossRefGoogle Scholar
  9. 9.
    Jones, G., Willett, P., Glen, R.C.: Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. 245, 43–53 (1995)CrossRefGoogle Scholar
  10. 10.
    Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., Wolfson, H.J.: PatchDock and SymmDock: servers for rigid and symmetric docking. Nucl. Acids. Res. 33, W363–W367 (2005)Google Scholar
  11. 11.
    Chang, D.T.-H., Oyang, Y.-J., Lin, J.-H.: MEDock: a web server for efficient prediction of ligand binding sites based on a novel optimization algorithm. Nucleic Acids Research 33(suppl. 2), W233–W238Google Scholar
  12. 12.
    Schames, J.R., Henchman, R.H., Siegel, J.S., Sotriffer, C.A., Ni, H., McCammon, J.A.: Discovery of a novel binding trench in HIV integrase. J. Med. Chem. 47(8), 1879–1881 (2004)CrossRefGoogle Scholar
  13. 13.
    Kitchen, D.B., Decornez, H., Furr, J.R., Bajorath, J.: Nat. Rev. Drug. Discov. 3, 935–949 (2004)CrossRefGoogle Scholar
  14. 14.
    Wang, R., Lu, Y., Wang, S.: J. Med. Chem. 46, 2287–2303 (2003)CrossRefGoogle Scholar
  15. 15.
    Charifson, P.S., Corkery, J.J., Murcko, M.A., Walters, W.P.: J. Med. Chem. 42, 5100–5109 (1999)CrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • G. Nageswara Rao
    • 1
  • P. Srinivasarao
    • 1
  • A. Apparao
    • 1
  • T. K. Rama Krishna Rao
    • 1
  1. 1.Aditya Institute of Technology & ManagementTekkaliIndia

Personalised recommendations