Skip to main content

Bacteriophages

  • Chapter
  • First Online:
  • 2523 Accesses

Abstract

Bacteriophage-based control of bacterial plant diseases is a fast developing field of research. A wide range of strategies (prevention of development of phage-resistant mutants, proper selection of efficient phages, timing of phage application, maximising chances for interaction between phage and target bacterium, overcoming adverse factors in phyllosphere on phage persistence, development of solar protectants to increase phase bioefficacy and delivery of phages in the presence of phage-sensitive bacterium) have been utilised to increase control efficacy. Phages are utilised as a component in developing integrated disease management strategies along with SAR inducers, avirulent strains and copper-manc­ozeb. Phage treatment is presently used in greenhouse and fields in Florida, USA, as a part of standard integrated management programme for tomato bacterial spot control (Momol et al., Integrated management of bacterial spot on tomato in Florida. EDIS, Institute of Food and Agricultural Sciences, University of Florida, Sept 2002, Report no. 110, 2002). Owing to their increasing efficacy and contribution to sustainable agriculture, phage-based products are likely to gain a bigger share in the bactericide market in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams MH (1959) Bacteriophages. Interscience, New York

    Google Scholar 

  • Ahmad MH, Morgan V (1994) Characterization of a cowpea (Vigna unguiculata) rhizobiophage and its effects on cowpea nodulation and growth. Biol Fertil Soils 18:297–301

    Article  Google Scholar 

  • Alvarez AM, Benedict AA, Mizumoto CY, Pollard LW, Civerolo EL (1991) Analysis of Xanthomonas campestris pv citri and X c citrumelo with monoclonal antibodies. Phytopathology 81:857–865

    Article  Google Scholar 

  • Balogh B (2002) Strategies of improving the efficacy of bacteriophages for controlling bacterial spot of tomato. MS thesis, University of Florida, Gainesville, FL, USA

    Google Scholar 

  • Balogh B (2006) Characterization and use of bacteriophages associated with citrus bacterial pathogens for disease control. PhD thesis, University of Florida, Gainesville, FL, USA

    Google Scholar 

  • Balogh B, Jones JB, Momol MT, Olson SM, Obradovic A, King P, Jackson LE (2003) Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Dis 87:949–954

    Article  Google Scholar 

  • Balogh B, Jones JB, Momol MT, Olson SM (2004) Persistence of bacteriophages as biocontrol agents in the tomato canopy. In: Momol MT, Ji P, Jones JB (eds) Proceedings of the 1st international symposium on tomato diseases. ISHS, Orlando, FL, pp 299–302

    Google Scholar 

  • Barrow PA (2001) The use of bacteriophages for treatment and prevention of bacterial disease in animals and animal models of human infection. J Chem Technol Biotechnol 76:677–682

    Article  CAS  Google Scholar 

  • Basit HA, Angle JS, Salem S, Gewaily EM (1992) Phage coating of soybean seeds reduces nodulation by indigenous soil bradyrhizobia. Can J Microbiol 38:1264–1269

    Article  Google Scholar 

  • Bergamin Filho A, Kimati H (1981) Estudos sobre um bacterofago isolado de Xanthomonas campestris. II. Seu emprego no controle de X campestris e X vesicatoria. Summa Phytopathologica 7:35–43

    Google Scholar 

  • Civerolo EL, Keil HL (1969) Inhibition of bacterial spot of peach foliage by Xanthomonas pruni bacteriophage. Phytopathology 12:1966–1967

    Google Scholar 

  • Civerolo EL, Maas Geesteranus HP (eds) (1972) Interaction between bacteria and bacteriophages on plant surfaces and in plant tissues. In: Proceedings of third international conference of plant pathogenic bacteria, 14–21 Apr 1971. Centre for Agricultural Publishing and Documentation, Wageningen, pp 25–37

    Google Scholar 

  • Coons GH, Kotila JE (1925) The transmissible lytic principle (bacteriophage) in relation to plant pathogens. Phytopathology 15:357–370

    Google Scholar 

  • D’Herelle F (1921) Le bactériophage: Sone rôle dans l’immunité. Masson et Cie, Paris

    Google Scholar 

  • Duckworth DH, Gulig PA (2002) Bacteriophages: potential treatment for bacterial infections. BioDrugs 16:57–62

    Article  PubMed  CAS  Google Scholar 

  • Flaherty JE, Jones JB, Harbaugh BK, Somodi GC, Jackson LE (2000) Control of bacterial spot on tomato in the greenhouse and field with H-mutant bacteriophages. Hortic Sci 35:882–884

    Google Scholar 

  • Flaherty JE, Harbaugh BK, Jones JB, Somodi GC, Jackson LE (2001) H-mutant bacteriophages as a potential biocontrol of bacterial blight of geranium. Hortic Sci 36:98–100

    Google Scholar 

  • Gill JJ, Svircev AM, Smith R, Castle AJ (2003) Bacteriophages of Erwinia amylovora. Appl Environ Microbiol 69:2133–2138

    Article  PubMed  CAS  Google Scholar 

  • Goto M (1992) Fundamentals of bacterial plant pathology. Academic, San Diego

    Google Scholar 

  • Goto M, Takahashi T, Messina MA (1980) A comparative study of the strains of Xanthomonas campestris pv citri isolated from citrus canker in Japan and cancrosis B in Argentina. Ann Phytopathol Soc Jpn 46:329–338

    Article  Google Scholar 

  • Goyal SM, Gerba CP, Bitton G (eds) (1987) Phage ecology. Wiley, New York

    Google Scholar 

  • Greer GG (2005) Bacteriophage control of food-borne bacteria. J Food Prot 68:1102–1111

    PubMed  Google Scholar 

  • Hendrick CA, Sequeira L (1984) Lipopolysaccharide-defective mutants of the wilt pathogen Pseudomonas solanacearum. Appl Environ Microbiol 48:94–101

    PubMed  CAS  Google Scholar 

  • Hibma AM, Jassim SAA, Griffiths MW (1997) Infection and removal of L-forms of Listeria monocytogenes with bred bacteriophage. Int J Food Microbiol 34:197–207

    Article  PubMed  CAS  Google Scholar 

  • Iriarte FB, Balogh B, Momol MT, Jones JB (2007) Factors affecting survival of bacteriophage on tomato leaf surfaces. Appl Environ Microbiol 18:177–183

    Google Scholar 

  • Jackson LE (1989) U.S. Patent No. 4828999

    Google Scholar 

  • Katznelson H, Sutton MD (1951) A rapid phage plaque count method for the detection of bacteria as applied to the demonstration of internally borne bacterial infection of seed. J Bacteriol 61:689–701

    PubMed  CAS  Google Scholar 

  • Keel C, Ucurum Z, Michaux P, Adrian M, Haas D (2002) Deleterious impact of a virulent bacteriophage on survival and biocontrol activity of Pseudomonas fluorescens Strain CHA0 in natural soil. Mol Plant Microbe Interact 15:567–576

    Article  PubMed  CAS  Google Scholar 

  • Klement Z, Rudolf K, Sands DC (eds) (1990) Methods in phytobacteriology. Akadémiai Kiadó, Budapest

    Google Scholar 

  • Koller W (1998) Chemical approaches to managing plant pathogens. In: Ruberson JR (ed) Handbook of integrated pest management. Dekker, New York

    Google Scholar 

  • Kotila JE, Coons GH (1925) Investigations on the black leg disease of potato. Michigan Agri Exp Stn Tech Bull 67:3–29

    Google Scholar 

  • Kutter E (1997) Phage therapy: bacteriophages as antibiotics. The Evergreen State College, Olympia, Washington, 15 Nov 1997. Available from: http://www.evergreen.edu/phage/phagetherapy/phagetherapy.htm

  • Lang JM, Gent DH, Schwartz HF (2007) Management of Xanthomonas leaf blight of onion with bacteriophages and a plant activator. Plant Dis 91:871–878

    Article  CAS  Google Scholar 

  • Leverentz B, Conway WS, Alavidze Z, Janisiewicz WJ, Fuchs Y, Camp MJ, Chighladze Sulakvelidze A (2001) Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study. J Food Prot 64:1116–1121

    PubMed  CAS  Google Scholar 

  • Leverentz B, Conway WS, Camp MJ, Janisiewicz WJ, Abuladze T, Yang M, Saftner R, Sulakvelidze A (2003) Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol 69:4519–4526

    Article  PubMed  CAS  Google Scholar 

  • Mallmann WL, Hemstreet CJ (1924) Isolation of an inhibitory substance from plants. Agri Res 28:599–602

    Google Scholar 

  • Manulis S, Zutra D, Kleitman F, Dror O, David I, Zilberstaine M, Shabi E (1998) Distribution of streptomycin-resistant strains of Erwinia amylovora in Israel and occurrence of blossom blight in the autumn. Phytoparasitica 26:223–230

    Article  Google Scholar 

  • Marco GM, Stall RE (1983) Control of bacterial spot of pepper initiated by strains of Xanthomonas campestris pv vesicatoria that differ in sensitive to copper. Plant Dis 67:779–781

    Article  CAS  Google Scholar 

  • McKenna F, El-Tarabil KA, Hardy GESTJ, Dell B (2001) Novel in vivo use of a polyvalent Streptomyces phage to disinfest Streptomyces scabies-infected seed potatoes. Plant Pathol 50:666–675

    Article  Google Scholar 

  • Minsavage GV, Canteros BI, Stall RE (1990) Plasmid-mediated resistance to streptomycin in Xanthomonas campestris pv vesicatoria. Phytopathology 80:719–723

    Article  CAS  Google Scholar 

  • Momol MT, Jones JB, Olson SM, Obradovic A, Balogh B, King P (2002) Integrated management of bacterial spot on tomato in Florida. EDIS, Institute of Food and Agricultural Sciences, University of Florida, Sept 2002, Report no. 110

    Google Scholar 

  • Munsch P, Olivier JM (1995) Biocontrol of bacterial blotch of the cultivated mushroom with lytic phages: some practical considerations. In: Elliot TJ (ed) Science and cultivation of edible fungi, Proceedings of the 14th international Congress, Oxford, vol II. Brookfield, Rotterdam, pp 595–602

    Google Scholar 

  • Munsch P, Olivier JM, Houdeau G (1991) Experimental control of bacterial blotch by bacteriophages. In: Maher MJ (ed) Science and cultivation of edible fungi. Balkema, Rotterdam, pp 389–396

    Google Scholar 

  • Obradovic A, Jones JB, Momol MT, Balogh B, Olson SM (2004) Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Dis 88:736–740

    Article  Google Scholar 

  • Obradovic A, Jones JB, Momol MT, Olson SM, Jackson LE, Balogh B, Guven K, Iriarte FB (2005) Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Dis 89:712–716

    Article  CAS  Google Scholar 

  • Okabe N, Goto M (1963) Bacteriophages of plant pathogens. Annu Rev Phytopathol 1:397–418

    Article  Google Scholar 

  • Ophel KM, Bird AF, Kerr A (1993) Association of bacteriophage particles with toxin production by Clavibacter toxicus, the causal agent of annual ryegrass toxicity. Phytopathology 83:676–681

    Article  CAS  Google Scholar 

  • Osawa S, Furuse K, Watanabe I (1981) Distribution of ribonucleic acid coliphages in animals. Appl Environ Microbiol 45:164–168

    Google Scholar 

  • Randhawa PS, Civerolo EL (1986) Interaction of Xanthomonas campestris pv pruni with pruniphage and epiphytic bacteria on detached peach leaves. Phytopathology 76:549–553

    Article  Google Scholar 

  • Reichelderfer K, Barry JW (1995) Introduction. In: Hal FR, Barry JW (eds) Biorational pest control agents: formulation and delivery. American Chemical Society, Washington, DC, pp 28–35

    Google Scholar 

  • Saccardi A, Gambin E, Zaccardelli M, Barone G, Mazzucchi U (1993) Xanthomonas campestris pv pruni control trials with phage treatments on peaches in the orchard. Phytopathol Mediterr 32:206–210

    Google Scholar 

  • Schnabel EL, Fernando WGD, Meyer MP, Jones AL, Jackson LE (1999) Bacteriophage of Erwinia amylovora and their potential for biocontrol. Acta Hortic 489:649–654

    Google Scholar 

  • Stein B, Ramallo J, Foguet L, Morandini M (2005) Chemical control of citrus canker in lemons [Citrus limon (L) Burm F] (Abstr). In: Second international citrus canker and Huanglongbing research workshop, Tucuman, Argentina, p 25

    Google Scholar 

  • Summers WC (2005) Bacteriophage research: early ­history. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC Press, Boca Raton, pp 5–27

    Google Scholar 

  • Svircev AM, Lehman SM, Kim WS, Barszez E, Schneider KE, Castle AJ (2006) Control of the fire blight pathogen with bacteriophages. In: Zeller W, Ullrich C (eds) Proceedings of the Ist international symposium on bio control of bacterial plant pathogens. Die Deutsche Bibliothek – CIP-Einheitsaufnahme, Berlin, Germany, pp 259–261

    Google Scholar 

  • Tanaka H, Negishi H, Maeda H (1990) Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearum M4S and its bacteriophage. Ann Phytopathol Soc Jpn 56:243–246

    Article  Google Scholar 

  • Tanji Y, Shimada T, Yoichi M, Miyanaga K, Hori K, Unno H (2004) Toward rational control of Escherichia coli O157:H7 by a phage cocktail. Appl Microbiol Biotechnol 64:270–274

    Article  PubMed  CAS  Google Scholar 

  • Thayer PL, Stall RE (1961) A survey of Xanthomonas vesicatoria resistance to streptomycin. Proc Fla Hortic Soc 75:163–165

    Google Scholar 

  • Thomas RC (1935) A bacteriophage in relation to Stewart’s disease of corn. Phytopathology 25:371–372

    Google Scholar 

  • Vidaver AK (1976) Prospects for control of phytopathogenic bacteria by bacteriophages and bacteriocins. Annu Rev Phytopathol 14:451–465

    Article  Google Scholar 

  • Vidaver AK, Schuster ML (1960) Characterization of Xanthomonas phaseoli bacteriophages. J Virol 4:300–308

    Google Scholar 

  • Voloudakis AE, Reignier TM, Cooksey DA (2005) Regulation of resistance to copper in Xanthomonas axonopodis pv vesicatoria. Appl Environ Microbiol 71:782–789

    Article  PubMed  CAS  Google Scholar 

  • Wagner PL, Waldor MK (2002) Bacteriophage control of bacterial virulence. Infect Immun 70:3985–3993

    Article  PubMed  CAS  Google Scholar 

  • Wiggins BA, Alexander M (1985) Minimum bacterial density for bacteriophage replication: implications for significance of bacteriophages in natural ecosystems. Appl Environ Microbiol 49:19–23

    PubMed  CAS  Google Scholar 

  • Woods TL, Israel HW, Sherf AF (1981) Isolation and partial characterization of a bacteriophage of Erwinia stewartii from the corn flea beetle, Chaetocnema pulicaria. Prot Ecol 3:229–236

    Google Scholar 

  • Wu WC (1972) Phage-induced alterations of cell disposition, phage adsorption and sensitivity, and virulence in Xanthomonas citri. Ann Phytopathol Soc Jpn 38:333–341

    Article  Google Scholar 

  • Wu WC, Lee ST, Kuo HF, Wang LY (1993) Use of phages for indentifying the citrus canker bacterium Xanthomonas campestris pv citri in Taiwan. Plant Pathol 42:389–395

    Article  Google Scholar 

  • Zaccardelli M, Saccardi A, Gambin E, Mazzucchi U (1992) Xanthomonas campestris pv pruni bacteriophages on peach trees and their potential use for biological control. Phytopathol Mediterr 31:133–140

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer India

About this chapter

Cite this chapter

Reddy, P.P. (2012). Bacteriophages. In: Recent advances in crop protection. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0723-8_3

Download citation

Publish with us

Policies and ethics