Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1869 Accesses

Abstact

Iron, in its various forms, when exposed to the different facets of environment it tends to be highly reactive owing to its natural tendency to form iron oxide. This degradation of iron is known as corrosion, more particularly rusting, when oxidation occurs in presence of moisture. However, if a thin film of iron oxide develops on its surface which is impervious and tenacious, it protects iron from further oxidation loss and it is called protective oxide film. This spontaneous formation of protective oxides which forms only on certain type of alloy steels is known as passivation. This hard nonreactive surface film (1–4 nm) inhibits further corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graham, J.: Passivity of iron. Electrochem. Soc. Proc. 13, 112–115 (2002)

    Google Scholar 

  2. Evans, U.R.: Mechanism of atmospheric rusting. Corros. Sci. 12, 227–246 (1972)

    Article  CAS  Google Scholar 

  3. Pourbaix, M.: Atlas of Electrochemical Equilibria in Aqueous Solutions. Pergamon, New York (1966)

    Google Scholar 

  4. Devenpori, A.J., Oblonsky, L.J., Ryan, M.P., Toney, M.F.: Electrochem. Soc. 174, 2162 (2000)

    Article  Google Scholar 

  5. Chen, C.T., Cahan, B.D.: The nature of passive film on iron. J. Electrochem, Soc. 129, 17–26 (1982)

    Article  CAS  Google Scholar 

  6. Matsubara, E., Suzuki, S., Waseda, Y.: Corrosion Mechanism of Iron from an X Ray Structural Viewpoint, Book on Characterisation of Corrosion Products on Steel Surfaces

    Google Scholar 

  7. Shastry, C.R., Friel, J.J., Townsend, H.E.: 16 yr atmospheric corrosion performance of weathering steels in marine, rural, and industrial environments: degradation of metals in atmosphere, STP 965, pp. 5–15. S.W. Dean & T. S. Lee, ASTM, Philadelphia (1988)

    Google Scholar 

  8. Townsend, H.E.: Estimating the atmospheric corrosion resistance of weathering steels in outdoor atmospheric corrosion, STP 1421, pp. 292–300. ASTM, West Conshohocken (2002)

    Google Scholar 

  9. Pourbaix, M.: The linear bilogarithmic law for atmospheric corrosion. Wiley, New York (1982)

    Google Scholar 

  10. Misawa, T., Asami, K., Hashimoto, K., Shimodaira, S.: Corros. Sci. 14, 279–289 (1974)

    Article  CAS  Google Scholar 

  11. Misawa, T., Yamashita, M., Miyuki, H., Nagano, H.: Protective rust layer formed on weathering steel by atmospheric corrosion for a quarter of a century, J. Iron Steel Inst. Jpn. 79(1):69–75 (1993)

    Google Scholar 

  12. Feliu, S., Morcillo, M., Feliu, Jr.S.: The prediction of atmospheric corrosion from meteorological and pollution parameters I: annual corrosion. Corro. Sci. 34:403

    Google Scholar 

  13. Felik, S., Morcillo, M., Felik, Jr.S.: The prediction of atmospheric corrosion from meteorological and pollution parameters ii: long term forecast, Corro. Sci. 34:415 (1993)

    Google Scholar 

  14. Natesan, M., Venkatachari, G., Palaniswamy, N.: Corrosivity and durability maps of india. Corro. Prev. Control 52(2), 43 (2005)

    CAS  Google Scholar 

  15. Natesan, M., Palaniswamy, N., Rengaswamy, N.S.: Atmospheric corrosivity survey of India. Mater. Perform. 45:52 (2006)

    Google Scholar 

  16. Evans, U.R.: The Corrosion and Oxidation of Metals, vol. 11. VCH Publishers, New York (1992)

    Google Scholar 

  17. Veleva, L.: Phase Transformation of Iron Hydroxide in the Corrosion Products Formed in Humid Tropical Climate, 58 NACE Conferences, Corrosion (2003)

    Google Scholar 

  18. Ohtsuka, Toshiaki: Passivation Oxide Films and Rust Layers on Iron Characterization of Corrosion Products on Steel Surfaces. Springer, Berlin Heidelberg (2006)

    Google Scholar 

  19. Oh, S.J., Cook, D.C., Townsend, H.E.: Atmospheric corrosion of different steels in marine rural & industrial environments. Corro. Sci. 41, 1687–1702 (1999)

    Article  CAS  Google Scholar 

  20. Balasubramaniam, R., Rameshkumar, A.V., Dillmann, P.: Curr. Sci. 85, 1546–1555 (2003)

    CAS  Google Scholar 

  21. Kihira, H., Ito, S., Murata, T.: The behavior of phosphorous during passivation of weathering steel by protective patina formation, Corr. Sci. 31:383–388 (1990)

    Google Scholar 

  22. Morcillo, M., Chiro, B., Otero, E.: Mater. Perform. 38, 72 (1999)

    CAS  Google Scholar 

  23. Mattson, E.: The atmospheric corrosion properties of some common structural metals: a comparative study. Mater. Perform. 21, 9–19 (1982)

    Google Scholar 

  24. Zhang, Q.C., Wu, J.S., Wang, J.J., Zheng, W.L., Chen, J.G., Li, A.B.: Corrosion Behavior of Weathering Steel in Marine Atmosphere 77, 603–608 (2003)

    CAS  Google Scholar 

  25. Misawa, T., Hashimoto, K., Shimodaira, S.: The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature. Corros. Sci. 14, 131–141 (1974)

    Article  CAS  Google Scholar 

  26. Yamashita, M., Maeda, A., Uchida, H., Kamimura, T., Miyuki, H.: J. Jpn. Inst. Metal 65, 967–971 (2001)

    CAS  Google Scholar 

  27. Suzuki, I., Hisamatsu, Y., Masuko, N.: J. Electrochem. Society 127, 2210 (1980)

    Article  CAS  Google Scholar 

  28. Oh, S.J., Cook, D.C., Townsend, H.E.: Characterisation of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact 112, 59–65 (1998)

    Article  CAS  Google Scholar 

  29. Stratmann, M., Bohnenkamp, K., Ramchandran, T.: Corros. Sci. 27, 905 (1987)

    Article  CAS  Google Scholar 

  30. Kishikawa, H., Miyuki, H., Hara, S., Kamiya, M., Yamashita, M.: Sumitomo Search 20 (1998)

    Google Scholar 

  31. Oh, S.J., Cook, D.C., KWon, S.J., Townsend, H.E.: Hyperfine Interact 4:49–54 (1999)

    Google Scholar 

  32. Yamashita, M., Nagano, H., Misawa, T., Townsend, H.E.: Structure of protective rust layers formed on weathering steels in industrial atmospheres of Japan and North America. ISIJ Int. 38(3), 285–290 (1998)

    Article  CAS  Google Scholar 

  33. Wei,F.I.: Atmospheric corrosion of carbon steels and weathering steels in Taiwan. British Corros. J. 26(3):209–214 (1991)

    Google Scholar 

  34. Asami, K., Kikuchi, M.: Corros. Sci. 45, 2671–2688 (2003)

    Article  CAS  Google Scholar 

  35. Townsend, H.E.: The Effects of alloying elements on the corrosion resistance of steel in industrial environments. In: Proceeding of 14th. International Corrosion Congress, Corrosion Institute of South Africa (1999)

    Google Scholar 

  36. Yamamoto, M., Katayama, H., Kodama, T.: Current dev. Mater. Process 12, 422 (1999)

    Google Scholar 

  37. Asami, K. Kikuchi, M.: In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal industrial atmosphere for 17 years. Corros. Sci. 45(11):2671–2688 (2003)

    Google Scholar 

  38. Kihira, H.: Electrochemical Phenomena at Interface, p.429 Marcel Dekker Inc. New York, (1998)

    Google Scholar 

  39. Sakashita, M., Sato, N.: Corros. Eng. 28, 450 (1979)

    CAS  Google Scholar 

  40. Keiser, J.T., Brown, C.W., Heidersbach, R.H.: Raman bands of different iron oxides compared to the bands seen in spectra of the inner rust on weathering steel. Corros. Sci. 23(2), 251 (1983)

    Article  CAS  Google Scholar 

  41. Yamashita, M., Asami, K., Ishikawa, T., Ohisuka, T., Tamura, H., Misawa, T.: Zairyo to Kankyo 50, 521 (2001)

    CAS  Google Scholar 

  42. Fyfe, D. Shanahan, C.E., Shreir, L.L.: Proceeding 4th International Congress On Metallic Corrosion. NACE 399 (1972)

    Google Scholar 

  43. Burstein, G.T., Marshall, P.I.: Growth of passivating films on steel in alkaline solution. Corros. Sci. 23, 125–137 (1983)

    Article  CAS  Google Scholar 

  44. Balasubramaniam, R.: The protective rust on low alloy steel. Corros. Sci. 14: 279 (1971)

    Google Scholar 

  45. Inouye, K., Ishii, S., Kaneko, K.: J Inorg. Gen. Chem. 391:86 (1972)

    Google Scholar 

  46. Townsend, H.E., Simpson, T.C., Johnson, G.: Structure of rust on weathering steel in rural and industrial environments. In: Proceding 20th International Corrosion Congress, NACE, Houston, 2:624–641 (1993)

    Google Scholar 

  47. Ishikawa, T., Nakazaki, H., Yasukawa, A.: Corros. Sci. 41, p1665–p1680 (1999)

    Article  Google Scholar 

  48. Uhlig, H.H., Revie, R.W.: Corrosion and Corrosion Control, 3rd edn, p. 96. Wiley, NewYork (1985)

    Google Scholar 

  49. Cleary, H.J., Greene, N.D.: Corros. Sci. 3 (1969)

    Google Scholar 

  50. Oh, S.J., Cook, D.C., Townsend, H.E.: Hyperfine Interact 3, 84–87 (1998)

    Google Scholar 

  51. Yamashita, M., Miyuki, H., Matsuda, Y., Nagano, H., Misawa, T.: Corros. Sci. 36, 283–299 (1994)

    Article  CAS  Google Scholar 

  52. Cook, D.C., Vanorden, A.C., Reyes, J., Oh, S.J., Balasubramanian, R., Carpio, J.J., Townsend, H.E.: Marine Corrosion In Tropical Environments, ASTM STP 1399, (2000)

    Google Scholar 

  53. Larrabee, C.P., Coburn, S.K.: Proceeding 1st International Congress on Metallic Corrosion, London 276 (1962)

    Google Scholar 

  54. Townsend, H.E., Simpson, T.C., Johnson, G.L.: Corrosion 50, 546–554 (1994)

    Article  CAS  Google Scholar 

  55. Horton, J.B., Goldberg, M.M., Watterson, K.F: Proceeding 4th. Internatioanl Congress on Metallic Corrosion, NACE 385–391 (1972)

    Google Scholar 

  56. Fontana, M.G.: Corrosion Engineering, 3rd.Edn, Mcgraw Hill Book, New York (1986)

    Google Scholar 

  57. Vernon, W.H.J.: Trans. Farady Soc. 31, 1668 (1935)

    Article  CAS  Google Scholar 

  58. Stratmann, M., Streckel, H.: Corros. Sci. 30, 697–714 (1990)

    Article  CAS  Google Scholar 

  59. Rendón, J.L., Valencia, A.: Kinetics of structural rust transformation in environments containing chloride and SO2. Rev. Met. 9–14 (2003)

    Google Scholar 

  60. Bolívar, F., Meneses, C.A.B., Minotas, J., Grenèche, J.M.: Variable temperature mössbauer study of some rust converters. Hyperfine Interact 148, 219–225 (2003)

    Article  Google Scholar 

  61. Townsend, H.E.: Atmospheric corrosion performance of quenched and tempered weathering steel. Corrosion 56, 883–886 (2000)

    Article  CAS  Google Scholar 

  62. Itagaki, M., Tajima, S., Nozue, R., Watanabe, K., Katayama, H., Noda, K.: 204th Meeting, The Electrochemical Society (2003)

    Google Scholar 

  63. Tait, W.S.: An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, Wisconsin, (1994) 79–115

    Google Scholar 

  64. Atmospheric Corrosion Resistant Steels: Product Catalogue. Nippon Steel Corporation, Japan (2005)

    Google Scholar 

  65. Veleva, L., Perez, G., Costa, M.A.: Statistical analysis of the temperature humidity complex and time of wetness of a tropical climate in the Yucatan peninsula in Maxico. Atmosphere Environ. 31, 773–776 (1997)

    Article  CAS  Google Scholar 

  66. Evans, U.R., Taylor, C.A.J.: Corros. Sci. 12, 227–246 (1972)

    Article  CAS  Google Scholar 

  67. Pourbaix, M.: Corros. Sci. 14, 25 (1974)

    Article  CAS  Google Scholar 

  68. Singh, D.D.N., Yadav, S., Saha, J.K.: Role of climatic conditions on corrosion characteristics of structural steels, Corros. Sci. 50(1):93–110 (2007)

    Google Scholar 

  69. Stratmann, M.: The Atmospheric corrosion of iron & steel: historic review and future perspectives. Corros. Rev. 2024 (2001)

    Google Scholar 

  70. Kimura, M. Kihira, H., Otha, N.: Use advance weathering steel to Avoid Cr as alloying element ti dosed to get chloride corrosion resistance. Corros. Sci. 47 (2005)

    Google Scholar 

  71. Leygraf, C., Graedel, T.: Atmospheric corrosion. J. Electrochem. Soc. 1497, p1010 (2000)

    Google Scholar 

  72. Environmental information system in India, http://envis.tropmet.res.in dated Jan 2007

  73. Rao, K.N.P., Lahiri, A.K.: Corrosion Map of India Corrosion Advisory Bureau. Metal Research, India (1970)

    Google Scholar 

  74. Sato, N.: An overview on passivity of metals. Corros. Sci. 31, p1 (1990)

    Article  Google Scholar 

  75. Nagayama, G.M., Cohen, M.: J. Electrochem. Soc. 110: 164 (1963)

    Google Scholar 

  76. Mizoguchi, T., Ishii, Y., Okada, T., Kimura, M., Kihira, H.: Corros. Sci. 47:2477–2491 (2005)

    Google Scholar 

  77. Usami, A., Kihira, H., Kusunoki, T.: Nippon Steel Technical Report 87, 17 (2003)

    Google Scholar 

  78. Okada, H., Hosoi, Y., Yukawa, K., Naito, H.: Proceeding 4th International Congress on Materials, Corrosion, NACE, 392–398 (1972)

    Google Scholar 

  79. Antunes, R.A., Costa, I., Faria, D.L.A.: Characterization of corrosion products formed on steels in the first months of atmospheric exposure, Mater. Res. 6(3):287–293 (2003)

    Google Scholar 

  80. David, L. Peterson, P. Rodgers, B.: Evaluation of organic coating with electrochemical impedance spectroscopy, part 2. Application of EIS to coatings. J. Coat. Technol. 88–93 (2004)

    Google Scholar 

  81. Kittelberger, W.W., Elm, A.C.: Water immersion testing of metal protective paints. role of osmosis in water absorption and blistering. Ind Eng Chem 38, 695–699 (1946)

    Article  CAS  Google Scholar 

  82. Bacon, C.R., Smith, J.J., Rugg, F.M.: Electrolytic resistance in evaluating protective merit of coatings on metals. Ind Eng Chem 40, 161–167 (1948)

    Article  CAS  Google Scholar 

  83. Thomas, N.L.: The barrier properties of paint coatings. Prog. Org. Coat. 19, 101–121 (1991)

    Article  CAS  Google Scholar 

  84. Ravie, R.W., Baker, B.G., Bockris, O.M.: Modern aspects of electrochemistry. Electrochem. Soc. 122 1460 (1975)

    Google Scholar 

  85. Greenfield, D., Scantlebury, D.: The protective action of organic coatings on steel a review. Corros. Sci. Eng. 3, 5 (2000)

    Google Scholar 

  86. Mayne, J.E.O.: Paints for the protection of steel: a review of research into their modes of action. Corrosion 5, 160–111 (1970)

    Google Scholar 

  87. Scantlebury, J.D.: Organic coatings systems and their future in corrosion protection. Proceedings of EUROCORR, Budapest, (1982)

    Google Scholar 

  88. Rosales, B.M., Sarli, A.R.D., Rincón, O.D., Rincón, A., Elsner, C.I., Marchisio, B.: An evaluation of coil coating formulations in marine environments. Prog. Org. Coat. 50, 105–114 (2003)

    Article  Google Scholar 

  89. Leidheiser, Jr.H. Simmons, G.W., Kellerman, E.: Electrochem. Acta, 45:257 (1973)

    Google Scholar 

  90. Koehler, E.L.: under film corrosion currents as the cause of failure of protective organic coatings. Org. Coat. 87–96 (1981)

    Google Scholar 

  91. Schwenk, W.: Adhesion Loss for organic coatings causes and consequences for corrosion protection by organic coatings. Corrosion, 103–110 (1981)

    Google Scholar 

  92. Leidheiser, Jr.H.: Alkali metal ions as aggressive agents to polymeric corrosion protective coatings. Corrosion, 43:296–297 (1987)

    Google Scholar 

  93. Smith, G., Dickie, R.A.: Adhesion failure mechanisms of primers. Ind. Eng. Chem. 17, 42–44 (1978)

    CAS  Google Scholar 

  94. Koehler, E.L.: The influence of contaminants on failure of protective organic coatings. Corrosion NACE 33, 209–217 (1977)

    CAS  Google Scholar 

  95. Leidheiser, Jr.H., Wang, W., Igetoft, L.: the mechanism for cathodic delamination of organic coatings from a metal surface. Prog. Org. Coat. 11:19–41 (1983)

    Google Scholar 

  96. Leidheiser, H., Funke, W.: Water disbandment and wet adhesion of organic coatings on metals a review and interpretation. Surf. Coat. Int. 70, 121–132 (1987)

    CAS  Google Scholar 

  97. Gowers, K.R., Scantlebury, J.D.: An electrochemical investigation of the effect of the adhesion of a lacquer coating on the under film corrosion. Surf. Coat. Int. 4, 114–121 (1988)

    Google Scholar 

  98. Gosselin, C.A.: Effect of surface preparation on the durability of structural adhesive bonds, polymeric materials for corrosion control. In: ACS Symposium 322:180–193 (1986)

    Google Scholar 

  99. Funke, W.: The role of adhesion in corrosion protection by organic coatings. JOCCA 68, 229–232 (1985)

    CAS  Google Scholar 

  100. Princeton Applied Research Application note AC-1. Basics of electrochemical impedance spectroscopy, USA, (2009)

    Google Scholar 

  101. Chico, B., Galván, J.C., Fuente, D.D.L., Morcillo, M.: Electrochemical impedance spectroscopy study of the effect of curing time on the early barrier properties of saline systems applied on steel substrates. Prog. Org. Coat. 60(1):45–53 (2007)

    Google Scholar 

  102. ASTM G1 Standard practice for preparing, cleaning & evaluating corrosion test specimens (1990)

    Google Scholar 

  103. Scully, J.R.: Electrochemical impedance of organic coated steel correlation of impedance parameters with long term coating deterioration. Electrochem. Soc. 13(6), 979 (1989)

    Article  Google Scholar 

  104. Jones, D.A.: Principles and Prevention of Corrosion. Prentice Hall, USA (1996)

    Google Scholar 

  105. Scully, J.R.: Polarization resistance method for determination of instantaneous corrosion rates. Corrosion 56, p199 (2000)

    Article  Google Scholar 

  106. Stern, M. Geary, A.L.: Electrochemical polarization, J. Electrochem. Soc. 104(1):56–63 (1957)

    Google Scholar 

  107. Harvey, F., Schweinsberg, J., Paul, D.D.: Evaluation of corrosion rate from polarisation curves not exhibiting a tafel region. Corros. Sci. 47, 3034–3052 (2005)

    Article  Google Scholar 

  108. Pourbaix, M.: Atlas of electrochemical equilibria in aqueous solutions, NACE, (1974)

    Google Scholar 

  109. Tait, W.S.: An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists. Pair O Docs Professionals E-Book, Madison (1994)

    Google Scholar 

  110. Corrosion Basics: An introduction, national association of corrosion engineers, (1984)

    Google Scholar 

  111. Scully, J.R.: Electrochemical impedance spectroscopy for evaluation of Organic coating deterioration & under film corrosion. A state of the art technical review, D. W. Taylor Research Center, Report SME-86/006, (1986)

    Google Scholar 

  112. Kendig, M. Scully, J.R.: Basic aspects of the application of electrochemical impedance for the life prediction of organic coatings on metals. Corrosion 31(1):22 (1990)

    Google Scholar 

  113. Mansfeld, F.: Evaluation of corrosion behaviour of coated metals with ac impedance measurements. Corros. Sci. 2(3), 317 (1983)

    Google Scholar 

  114. Equivalent Circuit Modeling using the Gamry EIS 300 Electrochemical Impedance Spectroscopy Software: Gamry Application Note, USA, (2001)

    Google Scholar 

  115. Ke, W.: Chinese Corrosion Survey Report, 1st Edn. Chemical Industry Press, Beijing, ISBN 7-5025-4792-4/TQx1816, (2003) p 13

    Google Scholar 

  116. Macdonald, J.R.: J. Electrochemical Society 223, 25 (1987)

    CAS  Google Scholar 

  117. Scibner Assciates Inc, Southern Pines, North Carolina (1998)

    Google Scholar 

  118. Kihira, H., Ito, S., Murata, T.: Corros. Sci. 31, 383–388 (1990)

    Article  CAS  Google Scholar 

  119. Nishimura, T., Katayama, H., Noda, K., Kodama, T.: Corros. Sci. 56, 935 (2000)

    Article  CAS  Google Scholar 

  120. Itagaki, M., Nozue, R., Watanabe, K., Katayama, H., Noda, K.: Corros. Sci. 46, 1301–1310 (2004)

    Article  CAS  Google Scholar 

  121. Konishi, H., Yamashita, M., Uchida, H., Mizuki, J.: Characterization of Rust Layer formed on Fe Fe-Ni and Fe-Cr alloys Exposed to Cl- Rich Environment. Mater. Trans. 46(2), 329–336 (2005)

    Article  CAS  Google Scholar 

  122. Feliu, S., Galvan, J.C., Bastidas, J.M., Simancas, J., Morcillo, M., Almeida, E.M.: Corros. Sci. 35, 1351–1358 (1993)

    Article  CAS  Google Scholar 

  123. Qu, A.Q., Li, L., Bai, W., Yan, C.: Initial atmospheric corrosion of weathering steel in the presence of NaCl and SO2, 16th Int Corrosion Congress, Beijing, (2005)

    Google Scholar 

  124. Cox, A., Lyon, S.B.: An Electrochemical study of the atmospheric corrosion of mild steel, part iii: the effect of sulphur dioxide. Corros. Sci. 36(7):1193–1199 (1994)

    Google Scholar 

  125. Cornell, R.M., Schwertmann, U.: The iron oxides: structure, properties, reactions, occurrences and uses. Wiley, Weinheim (2003)

    Google Scholar 

  126. Cullity, B.D., Stock, S.R.: Elements of X-ray diffraction, 3rd Edition Addison Wesley, Weinheim (2001)

    Google Scholar 

  127. Azaroff, L.V.: Elements of X-ray Crystallography, Mcgraw Hill, New York (1986)

    Google Scholar 

  128. Cook, D.C., Oh, S.J., Balasubramanian, R., Yamashita, M.: Hyperfine Interact. 122, 59–70 (1999)

    Article  CAS  Google Scholar 

  129. Legault, R.A. Preban, A.G.: Kinetics of atmospheric corrosion of low alloy steels in an industrial environment. Corrosion, 31(4) 117–122 (1975)

    Google Scholar 

  130. Baker, E. A.: Long term corrosion behaviour of materials in the marine atmosphere, degradation of metals in the atmosphere, STP 965, ASTM, New Jersey 125–144 (1998)

    Google Scholar 

  131. Liu, A., Dong, G.C., Han, J.H., Hou, E., Wei, K.: Influence of Cu and Mn on corrosion behaviour of low alloy steel in a simulated coastal environment. Corros. Sci. Protect. Technol. 20(4):235–238 (2008)

    Google Scholar 

  132. Anderson, A.: The Raman Effect. Marcel Dekker, (1973)

    Google Scholar 

  133. Herzberg, G.: Molecular Structure and Molecular Spectra. Van Nostrand Reinhold, New York (2008)

    Google Scholar 

  134. Gilson, T.R., Hendra, P.J.: Laser Raman Spectroscopy. Wiley Inter Science, New York (1970)

    Google Scholar 

  135. Loader, J.: Basic Laser Raman Spectroscopy. Heyden & Son, London (1970)

    Google Scholar 

  136. Gui, J. Devine, T.M.: Proceeding of 12th International Corrosion Congress, NACE, 2052 (1993)

    Google Scholar 

  137. Dunnwald, J., Otto, A.: Corros. Sci. 29, 1167–1176 (1989)

    Article  Google Scholar 

  138. Ohtsuka, T., Kubo, K., Sato, N.: Corrosion 42, 476–481 (1986)

    Article  CAS  Google Scholar 

  139. Ohtsuka, T.: Materials transctions, JIM 37:67 (1996)

    Google Scholar 

  140. Brown, C.W., Heidersbach, R.H.: Applied spectroscopy. 32(6):532–532 (1978)

    Google Scholar 

  141. Boucherit, N., Delicher, P., Joiret, S., Hugot, A.: Mater. Sci. Forum 51, 44 (1989)

    Google Scholar 

  142. Thierry, D., Persson, D., Lyegraf, C., Delichere, D., Joiret, S., Pallotta, C., Hugot, A.: J. Electrochem. Soc. 135(2):350–310 (1988)

    Google Scholar 

  143. Thibeau, R.J., Brown, C.W., Heidersbach, R.H.: Appl. Spectrosc. 32, 532 (1978)

    Article  CAS  Google Scholar 

  144. Yamashita, M., Uchid, H.: recent research & development in solving atmospheric corrosion problems of steel industries in Japan, Hyperfine Inter. 139(4):153–166 (2002)

    Google Scholar 

  145. Graedel, T.E., Frankonthal, R.P.: Corrosion mechanism for iron and low alloy steel exposed to the atmosphere. J. Electrochem. Soc. 137(8):2385–2394 (1990)

    Google Scholar 

  146. Ramana, K.V.S., Kaliappan, S., Ramanathan, N., Kavitha, V.: Characterization of rust phases formed on low carbon steel exposed to natural marine environment of Chennai harbor, India. Mater. Corros. 5(8), 873 (2007)

    Article  Google Scholar 

  147. Jaén, J.A., Muñóz, A., Justavino, J., Hernández, C.: Characterization of initial atmospheric corrosion of conventional weathering steels and a mild steel in a tropical atmosphere 192(1–3):51–59 (2009)

    Google Scholar 

  148. Hirofumi, K., Hideaki, M., Syidu, H., Mitsuaki, K., Masato, M.: Development of surface treatment technique promoting protective surface formations. Sumitomo Search 60, 20–26 (1998)

    Google Scholar 

  149. Mattson, E.: The atmospheric corrosion properties of some common structural metals: a comparative study. Mater. Perform. 21, 9–19 (1982)

    Google Scholar 

  150. Bolivar, F., Morales, A.L., Aramburo, C.: Simulation of a long term atmospheric corrosion process on plain and weathering steels. Rev. Metal 265–269 (2003)

    Google Scholar 

  151. Uhlig, H.H.: Passivity in metals and alloys. Corros. Sci. 19:777 (1979)

    Google Scholar 

  152. Komori, T., Kyono, K., Kato, C.: New surface treatment technology for promoting protective rust formation on weathering steel. In:132nd Symposium Corrosion Prevention. 65–72 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Kumar Saha .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Saha, J.K. (2013). Theoretical Evidences. In: Corrosion of Constructional Steels in Marine and Industrial Environment. Engineering Materials. Springer, India. https://doi.org/10.1007/978-81-322-0720-7_1

Download citation

Publish with us

Policies and ethics