Advertisement

Theoretical Evidences

  • Jayanta Kumar Saha
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstact

Iron, in its various forms, when exposed to the different facets of environment it tends to be highly reactive owing to its natural tendency to form iron oxide. This degradation of iron is known as corrosion, more particularly rusting, when oxidation occurs in presence of moisture. However, if a thin film of iron oxide develops on its surface which is impervious and tenacious, it protects iron from further oxidation loss and it is called protective oxide film. This spontaneous formation of protective oxides which forms only on certain type of alloy steels is known as passivation. This hard nonreactive surface film (1–4 nm) inhibits further corrosion.

Keywords

Corrosion Rate Corrosion Product Electrochemical Impedance Spectroscopy Passive Film Open Circuit Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Graham, J.: Passivity of iron. Electrochem. Soc. Proc. 13, 112–115 (2002)Google Scholar
  2. 2.
    Evans, U.R.: Mechanism of atmospheric rusting. Corros. Sci. 12, 227–246 (1972)CrossRefGoogle Scholar
  3. 3.
    Pourbaix, M.: Atlas of Electrochemical Equilibria in Aqueous Solutions. Pergamon, New York (1966)Google Scholar
  4. 4.
    Devenpori, A.J., Oblonsky, L.J., Ryan, M.P., Toney, M.F.: Electrochem. Soc. 174, 2162 (2000)CrossRefGoogle Scholar
  5. 5.
    Chen, C.T., Cahan, B.D.: The nature of passive film on iron. J. Electrochem, Soc. 129, 17–26 (1982)CrossRefGoogle Scholar
  6. 6.
    Matsubara, E., Suzuki, S., Waseda, Y.: Corrosion Mechanism of Iron from an X Ray Structural Viewpoint, Book on Characterisation of Corrosion Products on Steel SurfacesGoogle Scholar
  7. 7.
    Shastry, C.R., Friel, J.J., Townsend, H.E.: 16 yr atmospheric corrosion performance of weathering steels in marine, rural, and industrial environments: degradation of metals in atmosphere, STP 965, pp. 5–15. S.W. Dean & T. S. Lee, ASTM, Philadelphia (1988)Google Scholar
  8. 8.
    Townsend, H.E.: Estimating the atmospheric corrosion resistance of weathering steels in outdoor atmospheric corrosion, STP 1421, pp. 292–300. ASTM, West Conshohocken (2002)Google Scholar
  9. 9.
    Pourbaix, M.: The linear bilogarithmic law for atmospheric corrosion. Wiley, New York (1982)Google Scholar
  10. 10.
    Misawa, T., Asami, K., Hashimoto, K., Shimodaira, S.: Corros. Sci. 14, 279–289 (1974)CrossRefGoogle Scholar
  11. 11.
    Misawa, T., Yamashita, M., Miyuki, H., Nagano, H.: Protective rust layer formed on weathering steel by atmospheric corrosion for a quarter of a century, J. Iron Steel Inst. Jpn. 79(1):69–75 (1993)Google Scholar
  12. 12.
    Feliu, S., Morcillo, M., Feliu, Jr.S.: The prediction of atmospheric corrosion from meteorological and pollution parameters I: annual corrosion. Corro. Sci. 34:403Google Scholar
  13. 13.
    Felik, S., Morcillo, M., Felik, Jr.S.: The prediction of atmospheric corrosion from meteorological and pollution parameters ii: long term forecast, Corro. Sci. 34:415 (1993)Google Scholar
  14. 14.
    Natesan, M., Venkatachari, G., Palaniswamy, N.: Corrosivity and durability maps of india. Corro. Prev. Control 52(2), 43 (2005)Google Scholar
  15. 15.
    Natesan, M., Palaniswamy, N., Rengaswamy, N.S.: Atmospheric corrosivity survey of India. Mater. Perform. 45:52 (2006)Google Scholar
  16. 16.
    Evans, U.R.: The Corrosion and Oxidation of Metals, vol. 11. VCH Publishers, New York (1992)Google Scholar
  17. 17.
    Veleva, L.: Phase Transformation of Iron Hydroxide in the Corrosion Products Formed in Humid Tropical Climate, 58 NACE Conferences, Corrosion (2003)Google Scholar
  18. 18.
    Ohtsuka, Toshiaki: Passivation Oxide Films and Rust Layers on Iron Characterization of Corrosion Products on Steel Surfaces. Springer, Berlin Heidelberg (2006)Google Scholar
  19. 19.
    Oh, S.J., Cook, D.C., Townsend, H.E.: Atmospheric corrosion of different steels in marine rural & industrial environments. Corro. Sci. 41, 1687–1702 (1999)CrossRefGoogle Scholar
  20. 20.
    Balasubramaniam, R., Rameshkumar, A.V., Dillmann, P.: Curr. Sci. 85, 1546–1555 (2003)Google Scholar
  21. 21.
    Kihira, H., Ito, S., Murata, T.: The behavior of phosphorous during passivation of weathering steel by protective patina formation, Corr. Sci. 31:383–388 (1990)Google Scholar
  22. 22.
    Morcillo, M., Chiro, B., Otero, E.: Mater. Perform. 38, 72 (1999)Google Scholar
  23. 23.
    Mattson, E.: The atmospheric corrosion properties of some common structural metals: a comparative study. Mater. Perform. 21, 9–19 (1982)Google Scholar
  24. 24.
    Zhang, Q.C., Wu, J.S., Wang, J.J., Zheng, W.L., Chen, J.G., Li, A.B.: Corrosion Behavior of Weathering Steel in Marine Atmosphere 77, 603–608 (2003)Google Scholar
  25. 25.
    Misawa, T., Hashimoto, K., Shimodaira, S.: The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature. Corros. Sci. 14, 131–141 (1974)CrossRefGoogle Scholar
  26. 26.
    Yamashita, M., Maeda, A., Uchida, H., Kamimura, T., Miyuki, H.: J. Jpn. Inst. Metal 65, 967–971 (2001)Google Scholar
  27. 27.
    Suzuki, I., Hisamatsu, Y., Masuko, N.: J. Electrochem. Society 127, 2210 (1980)CrossRefGoogle Scholar
  28. 28.
    Oh, S.J., Cook, D.C., Townsend, H.E.: Characterisation of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact 112, 59–65 (1998)CrossRefGoogle Scholar
  29. 29.
    Stratmann, M., Bohnenkamp, K., Ramchandran, T.: Corros. Sci. 27, 905 (1987)CrossRefGoogle Scholar
  30. 30.
    Kishikawa, H., Miyuki, H., Hara, S., Kamiya, M., Yamashita, M.: Sumitomo Search 20 (1998)Google Scholar
  31. 31.
    Oh, S.J., Cook, D.C., KWon, S.J., Townsend, H.E.: Hyperfine Interact 4:49–54 (1999)Google Scholar
  32. 32.
    Yamashita, M., Nagano, H., Misawa, T., Townsend, H.E.: Structure of protective rust layers formed on weathering steels in industrial atmospheres of Japan and North America. ISIJ Int. 38(3), 285–290 (1998)CrossRefGoogle Scholar
  33. 33.
    Wei,F.I.: Atmospheric corrosion of carbon steels and weathering steels in Taiwan. British Corros. J. 26(3):209–214 (1991)Google Scholar
  34. 34.
    Asami, K., Kikuchi, M.: Corros. Sci. 45, 2671–2688 (2003)CrossRefGoogle Scholar
  35. 35.
    Townsend, H.E.: The Effects of alloying elements on the corrosion resistance of steel in industrial environments. In: Proceeding of 14th. International Corrosion Congress, Corrosion Institute of South Africa (1999)Google Scholar
  36. 36.
    Yamamoto, M., Katayama, H., Kodama, T.: Current dev. Mater. Process 12, 422 (1999)Google Scholar
  37. 37.
    Asami, K. Kikuchi, M.: In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal industrial atmosphere for 17 years. Corros. Sci. 45(11):2671–2688 (2003)Google Scholar
  38. 38.
    Kihira, H.: Electrochemical Phenomena at Interface, p.429 Marcel Dekker Inc. New York, (1998)Google Scholar
  39. 39.
    Sakashita, M., Sato, N.: Corros. Eng. 28, 450 (1979)Google Scholar
  40. 40.
    Keiser, J.T., Brown, C.W., Heidersbach, R.H.: Raman bands of different iron oxides compared to the bands seen in spectra of the inner rust on weathering steel. Corros. Sci. 23(2), 251 (1983)CrossRefGoogle Scholar
  41. 41.
    Yamashita, M., Asami, K., Ishikawa, T., Ohisuka, T., Tamura, H., Misawa, T.: Zairyo to Kankyo 50, 521 (2001)Google Scholar
  42. 42.
    Fyfe, D. Shanahan, C.E., Shreir, L.L.: Proceeding 4th International Congress On Metallic Corrosion. NACE 399 (1972)Google Scholar
  43. 43.
    Burstein, G.T., Marshall, P.I.: Growth of passivating films on steel in alkaline solution. Corros. Sci. 23, 125–137 (1983)CrossRefGoogle Scholar
  44. 44.
    Balasubramaniam, R.: The protective rust on low alloy steel. Corros. Sci. 14: 279 (1971)Google Scholar
  45. 45.
    Inouye, K., Ishii, S., Kaneko, K.: J Inorg. Gen. Chem. 391:86 (1972)Google Scholar
  46. 46.
    Townsend, H.E., Simpson, T.C., Johnson, G.: Structure of rust on weathering steel in rural and industrial environments. In: Proceding 20th International Corrosion Congress, NACE, Houston, 2:624–641 (1993)Google Scholar
  47. 47.
    Ishikawa, T., Nakazaki, H., Yasukawa, A.: Corros. Sci. 41, p1665–p1680 (1999)CrossRefGoogle Scholar
  48. 48.
    Uhlig, H.H., Revie, R.W.: Corrosion and Corrosion Control, 3rd edn, p. 96. Wiley, NewYork (1985)Google Scholar
  49. 49.
    Cleary, H.J., Greene, N.D.: Corros. Sci. 3 (1969)Google Scholar
  50. 50.
    Oh, S.J., Cook, D.C., Townsend, H.E.: Hyperfine Interact 3, 84–87 (1998)Google Scholar
  51. 51.
    Yamashita, M., Miyuki, H., Matsuda, Y., Nagano, H., Misawa, T.: Corros. Sci. 36, 283–299 (1994)CrossRefGoogle Scholar
  52. 52.
    Cook, D.C., Vanorden, A.C., Reyes, J., Oh, S.J., Balasubramanian, R., Carpio, J.J., Townsend, H.E.: Marine Corrosion In Tropical Environments, ASTM STP 1399, (2000)Google Scholar
  53. 53.
    Larrabee, C.P., Coburn, S.K.: Proceeding 1st International Congress on Metallic Corrosion, London 276 (1962)Google Scholar
  54. 54.
    Townsend, H.E., Simpson, T.C., Johnson, G.L.: Corrosion 50, 546–554 (1994)CrossRefGoogle Scholar
  55. 55.
    Horton, J.B., Goldberg, M.M., Watterson, K.F: Proceeding 4th. Internatioanl Congress on Metallic Corrosion, NACE 385–391 (1972)Google Scholar
  56. 56.
    Fontana, M.G.: Corrosion Engineering, 3rd.Edn, Mcgraw Hill Book, New York (1986)Google Scholar
  57. 57.
    Vernon, W.H.J.: Trans. Farady Soc. 31, 1668 (1935)CrossRefGoogle Scholar
  58. 58.
    Stratmann, M., Streckel, H.: Corros. Sci. 30, 697–714 (1990)CrossRefGoogle Scholar
  59. 59.
    Rendón, J.L., Valencia, A.: Kinetics of structural rust transformation in environments containing chloride and SO2. Rev. Met. 9–14 (2003)Google Scholar
  60. 60.
    Bolívar, F., Meneses, C.A.B., Minotas, J., Grenèche, J.M.: Variable temperature mössbauer study of some rust converters. Hyperfine Interact 148, 219–225 (2003)CrossRefGoogle Scholar
  61. 61.
    Townsend, H.E.: Atmospheric corrosion performance of quenched and tempered weathering steel. Corrosion 56, 883–886 (2000)CrossRefGoogle Scholar
  62. 62.
    Itagaki, M., Tajima, S., Nozue, R., Watanabe, K., Katayama, H., Noda, K.: 204th Meeting, The Electrochemical Society (2003)Google Scholar
  63. 63.
    Tait, W.S.: An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, Wisconsin, (1994) 79–115Google Scholar
  64. 64.
    Atmospheric Corrosion Resistant Steels: Product Catalogue. Nippon Steel Corporation, Japan (2005)Google Scholar
  65. 65.
    Veleva, L., Perez, G., Costa, M.A.: Statistical analysis of the temperature humidity complex and time of wetness of a tropical climate in the Yucatan peninsula in Maxico. Atmosphere Environ. 31, 773–776 (1997)CrossRefGoogle Scholar
  66. 66.
    Evans, U.R., Taylor, C.A.J.: Corros. Sci. 12, 227–246 (1972)CrossRefGoogle Scholar
  67. 67.
    Pourbaix, M.: Corros. Sci. 14, 25 (1974)CrossRefGoogle Scholar
  68. 68.
    Singh, D.D.N., Yadav, S., Saha, J.K.: Role of climatic conditions on corrosion characteristics of structural steels, Corros. Sci. 50(1):93–110 (2007)Google Scholar
  69. 69.
    Stratmann, M.: The Atmospheric corrosion of iron & steel: historic review and future perspectives. Corros. Rev. 2024 (2001)Google Scholar
  70. 70.
    Kimura, M. Kihira, H., Otha, N.: Use advance weathering steel to Avoid Cr as alloying element ti dosed to get chloride corrosion resistance. Corros. Sci. 47 (2005)Google Scholar
  71. 71.
    Leygraf, C., Graedel, T.: Atmospheric corrosion. J. Electrochem. Soc. 1497, p1010 (2000)Google Scholar
  72. 72.
    Environmental information system in India, http://envis.tropmet.res.in dated Jan 2007
  73. 73.
    Rao, K.N.P., Lahiri, A.K.: Corrosion Map of India Corrosion Advisory Bureau. Metal Research, India (1970)Google Scholar
  74. 74.
    Sato, N.: An overview on passivity of metals. Corros. Sci. 31, p1 (1990)CrossRefGoogle Scholar
  75. 75.
    Nagayama, G.M., Cohen, M.: J. Electrochem. Soc. 110: 164 (1963)Google Scholar
  76. 76.
    Mizoguchi, T., Ishii, Y., Okada, T., Kimura, M., Kihira, H.: Corros. Sci. 47:2477–2491 (2005)Google Scholar
  77. 77.
    Usami, A., Kihira, H., Kusunoki, T.: Nippon Steel Technical Report 87, 17 (2003)Google Scholar
  78. 78.
    Okada, H., Hosoi, Y., Yukawa, K., Naito, H.: Proceeding 4th International Congress on Materials, Corrosion, NACE, 392–398 (1972)Google Scholar
  79. 79.
    Antunes, R.A., Costa, I., Faria, D.L.A.: Characterization of corrosion products formed on steels in the first months of atmospheric exposure, Mater. Res. 6(3):287–293 (2003)Google Scholar
  80. 80.
    David, L. Peterson, P. Rodgers, B.: Evaluation of organic coating with electrochemical impedance spectroscopy, part 2. Application of EIS to coatings. J. Coat. Technol. 88–93 (2004)Google Scholar
  81. 81.
    Kittelberger, W.W., Elm, A.C.: Water immersion testing of metal protective paints. role of osmosis in water absorption and blistering. Ind Eng Chem 38, 695–699 (1946)CrossRefGoogle Scholar
  82. 82.
    Bacon, C.R., Smith, J.J., Rugg, F.M.: Electrolytic resistance in evaluating protective merit of coatings on metals. Ind Eng Chem 40, 161–167 (1948)CrossRefGoogle Scholar
  83. 83.
    Thomas, N.L.: The barrier properties of paint coatings. Prog. Org. Coat. 19, 101–121 (1991)CrossRefGoogle Scholar
  84. 84.
    Ravie, R.W., Baker, B.G., Bockris, O.M.: Modern aspects of electrochemistry. Electrochem. Soc. 122 1460 (1975)Google Scholar
  85. 85.
    Greenfield, D., Scantlebury, D.: The protective action of organic coatings on steel a review. Corros. Sci. Eng. 3, 5 (2000)Google Scholar
  86. 86.
    Mayne, J.E.O.: Paints for the protection of steel: a review of research into their modes of action. Corrosion 5, 160–111 (1970)Google Scholar
  87. 87.
    Scantlebury, J.D.: Organic coatings systems and their future in corrosion protection. Proceedings of EUROCORR, Budapest, (1982)Google Scholar
  88. 88.
    Rosales, B.M., Sarli, A.R.D., Rincón, O.D., Rincón, A., Elsner, C.I., Marchisio, B.: An evaluation of coil coating formulations in marine environments. Prog. Org. Coat. 50, 105–114 (2003)CrossRefGoogle Scholar
  89. 89.
    Leidheiser, Jr.H. Simmons, G.W., Kellerman, E.: Electrochem. Acta, 45:257 (1973)Google Scholar
  90. 90.
    Koehler, E.L.: under film corrosion currents as the cause of failure of protective organic coatings. Org. Coat. 87–96 (1981)Google Scholar
  91. 91.
    Schwenk, W.: Adhesion Loss for organic coatings causes and consequences for corrosion protection by organic coatings. Corrosion, 103–110 (1981)Google Scholar
  92. 92.
    Leidheiser, Jr.H.: Alkali metal ions as aggressive agents to polymeric corrosion protective coatings. Corrosion, 43:296–297 (1987)Google Scholar
  93. 93.
    Smith, G., Dickie, R.A.: Adhesion failure mechanisms of primers. Ind. Eng. Chem. 17, 42–44 (1978)Google Scholar
  94. 94.
    Koehler, E.L.: The influence of contaminants on failure of protective organic coatings. Corrosion NACE 33, 209–217 (1977)Google Scholar
  95. 95.
    Leidheiser, Jr.H., Wang, W., Igetoft, L.: the mechanism for cathodic delamination of organic coatings from a metal surface. Prog. Org. Coat. 11:19–41 (1983)Google Scholar
  96. 96.
    Leidheiser, H., Funke, W.: Water disbandment and wet adhesion of organic coatings on metals a review and interpretation. Surf. Coat. Int. 70, 121–132 (1987)Google Scholar
  97. 97.
    Gowers, K.R., Scantlebury, J.D.: An electrochemical investigation of the effect of the adhesion of a lacquer coating on the under film corrosion. Surf. Coat. Int. 4, 114–121 (1988)Google Scholar
  98. 98.
    Gosselin, C.A.: Effect of surface preparation on the durability of structural adhesive bonds, polymeric materials for corrosion control. In: ACS Symposium 322:180–193 (1986)Google Scholar
  99. 99.
    Funke, W.: The role of adhesion in corrosion protection by organic coatings. JOCCA 68, 229–232 (1985)Google Scholar
  100. 100.
    Princeton Applied Research Application note AC-1. Basics of electrochemical impedance spectroscopy, USA, (2009)Google Scholar
  101. 101.
    Chico, B., Galván, J.C., Fuente, D.D.L., Morcillo, M.: Electrochemical impedance spectroscopy study of the effect of curing time on the early barrier properties of saline systems applied on steel substrates. Prog. Org. Coat. 60(1):45–53 (2007)Google Scholar
  102. 102.
    ASTM G1 Standard practice for preparing, cleaning & evaluating corrosion test specimens (1990)Google Scholar
  103. 103.
    Scully, J.R.: Electrochemical impedance of organic coated steel correlation of impedance parameters with long term coating deterioration. Electrochem. Soc. 13(6), 979 (1989)CrossRefGoogle Scholar
  104. 104.
    Jones, D.A.: Principles and Prevention of Corrosion. Prentice Hall, USA (1996)Google Scholar
  105. 105.
    Scully, J.R.: Polarization resistance method for determination of instantaneous corrosion rates. Corrosion 56, p199 (2000)CrossRefGoogle Scholar
  106. 106.
    Stern, M. Geary, A.L.: Electrochemical polarization, J. Electrochem. Soc. 104(1):56–63 (1957)Google Scholar
  107. 107.
    Harvey, F., Schweinsberg, J., Paul, D.D.: Evaluation of corrosion rate from polarisation curves not exhibiting a tafel region. Corros. Sci. 47, 3034–3052 (2005)CrossRefGoogle Scholar
  108. 108.
    Pourbaix, M.: Atlas of electrochemical equilibria in aqueous solutions, NACE, (1974)Google Scholar
  109. 109.
    Tait, W.S.: An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists. Pair O Docs Professionals E-Book, Madison (1994)Google Scholar
  110. 110.
    Corrosion Basics: An introduction, national association of corrosion engineers, (1984)Google Scholar
  111. 111.
    Scully, J.R.: Electrochemical impedance spectroscopy for evaluation of Organic coating deterioration & under film corrosion. A state of the art technical review, D. W. Taylor Research Center, Report SME-86/006, (1986)Google Scholar
  112. 112.
    Kendig, M. Scully, J.R.: Basic aspects of the application of electrochemical impedance for the life prediction of organic coatings on metals. Corrosion 31(1):22 (1990)Google Scholar
  113. 113.
    Mansfeld, F.: Evaluation of corrosion behaviour of coated metals with ac impedance measurements. Corros. Sci. 2(3), 317 (1983)Google Scholar
  114. 114.
    Equivalent Circuit Modeling using the Gamry EIS 300 Electrochemical Impedance Spectroscopy Software: Gamry Application Note, USA, (2001)Google Scholar
  115. 115.
    Ke, W.: Chinese Corrosion Survey Report, 1st Edn. Chemical Industry Press, Beijing, ISBN 7-5025-4792-4/TQx1816, (2003) p 13Google Scholar
  116. 116.
    Macdonald, J.R.: J. Electrochemical Society 223, 25 (1987)Google Scholar
  117. 117.
    Scibner Assciates Inc, Southern Pines, North Carolina (1998)Google Scholar
  118. 118.
    Kihira, H., Ito, S., Murata, T.: Corros. Sci. 31, 383–388 (1990)CrossRefGoogle Scholar
  119. 119.
    Nishimura, T., Katayama, H., Noda, K., Kodama, T.: Corros. Sci. 56, 935 (2000)CrossRefGoogle Scholar
  120. 120.
    Itagaki, M., Nozue, R., Watanabe, K., Katayama, H., Noda, K.: Corros. Sci. 46, 1301–1310 (2004)CrossRefGoogle Scholar
  121. 121.
    Konishi, H., Yamashita, M., Uchida, H., Mizuki, J.: Characterization of Rust Layer formed on Fe Fe-Ni and Fe-Cr alloys Exposed to Cl- Rich Environment. Mater. Trans. 46(2), 329–336 (2005)CrossRefGoogle Scholar
  122. 122.
    Feliu, S., Galvan, J.C., Bastidas, J.M., Simancas, J., Morcillo, M., Almeida, E.M.: Corros. Sci. 35, 1351–1358 (1993)CrossRefGoogle Scholar
  123. 123.
    Qu, A.Q., Li, L., Bai, W., Yan, C.: Initial atmospheric corrosion of weathering steel in the presence of NaCl and SO2, 16th Int Corrosion Congress, Beijing, (2005)Google Scholar
  124. 124.
    Cox, A., Lyon, S.B.: An Electrochemical study of the atmospheric corrosion of mild steel, part iii: the effect of sulphur dioxide. Corros. Sci. 36(7):1193–1199 (1994)Google Scholar
  125. 125.
    Cornell, R.M., Schwertmann, U.: The iron oxides: structure, properties, reactions, occurrences and uses. Wiley, Weinheim (2003) Google Scholar
  126. 126.
    Cullity, B.D., Stock, S.R.: Elements of X-ray diffraction, 3rd Edition Addison Wesley, Weinheim (2001)Google Scholar
  127. 127.
    Azaroff, L.V.: Elements of X-ray Crystallography, Mcgraw Hill, New York (1986)Google Scholar
  128. 128.
    Cook, D.C., Oh, S.J., Balasubramanian, R., Yamashita, M.: Hyperfine Interact. 122, 59–70 (1999)CrossRefGoogle Scholar
  129. 129.
    Legault, R.A. Preban, A.G.: Kinetics of atmospheric corrosion of low alloy steels in an industrial environment. Corrosion, 31(4) 117–122 (1975)Google Scholar
  130. 130.
    Baker, E. A.: Long term corrosion behaviour of materials in the marine atmosphere, degradation of metals in the atmosphere, STP 965, ASTM, New Jersey 125–144 (1998)Google Scholar
  131. 131.
    Liu, A., Dong, G.C., Han, J.H., Hou, E., Wei, K.: Influence of Cu and Mn on corrosion behaviour of low alloy steel in a simulated coastal environment. Corros. Sci. Protect. Technol. 20(4):235–238 (2008)Google Scholar
  132. 132.
    Anderson, A.: The Raman Effect. Marcel Dekker, (1973)Google Scholar
  133. 133.
    Herzberg, G.: Molecular Structure and Molecular Spectra. Van Nostrand Reinhold, New York (2008)Google Scholar
  134. 134.
    Gilson, T.R., Hendra, P.J.: Laser Raman Spectroscopy. Wiley Inter Science, New York (1970)Google Scholar
  135. 135.
    Loader, J.: Basic Laser Raman Spectroscopy. Heyden & Son, London (1970)Google Scholar
  136. 136.
    Gui, J. Devine, T.M.: Proceeding of 12th International Corrosion Congress, NACE, 2052 (1993)Google Scholar
  137. 137.
    Dunnwald, J., Otto, A.: Corros. Sci. 29, 1167–1176 (1989)CrossRefGoogle Scholar
  138. 138.
    Ohtsuka, T., Kubo, K., Sato, N.: Corrosion 42, 476–481 (1986)CrossRefGoogle Scholar
  139. 139.
    Ohtsuka, T.: Materials transctions, JIM 37:67 (1996)Google Scholar
  140. 140.
    Brown, C.W., Heidersbach, R.H.: Applied spectroscopy. 32(6):532–532 (1978)Google Scholar
  141. 141.
    Boucherit, N., Delicher, P., Joiret, S., Hugot, A.: Mater. Sci. Forum 51, 44 (1989)Google Scholar
  142. 142.
    Thierry, D., Persson, D., Lyegraf, C., Delichere, D., Joiret, S., Pallotta, C., Hugot, A.: J. Electrochem. Soc. 135(2):350–310 (1988)Google Scholar
  143. 143.
    Thibeau, R.J., Brown, C.W., Heidersbach, R.H.: Appl. Spectrosc. 32, 532 (1978)CrossRefGoogle Scholar
  144. 144.
    Yamashita, M., Uchid, H.: recent research & development in solving atmospheric corrosion problems of steel industries in Japan, Hyperfine Inter. 139(4):153–166 (2002)Google Scholar
  145. 145.
    Graedel, T.E., Frankonthal, R.P.: Corrosion mechanism for iron and low alloy steel exposed to the atmosphere. J. Electrochem. Soc. 137(8):2385–2394 (1990)Google Scholar
  146. 146.
    Ramana, K.V.S., Kaliappan, S., Ramanathan, N., Kavitha, V.: Characterization of rust phases formed on low carbon steel exposed to natural marine environment of Chennai harbor, India. Mater. Corros. 5(8), 873 (2007)CrossRefGoogle Scholar
  147. 147.
    Jaén, J.A., Muñóz, A., Justavino, J., Hernández, C.: Characterization of initial atmospheric corrosion of conventional weathering steels and a mild steel in a tropical atmosphere 192(1–3):51–59 (2009)Google Scholar
  148. 148.
    Hirofumi, K., Hideaki, M., Syidu, H., Mitsuaki, K., Masato, M.: Development of surface treatment technique promoting protective surface formations. Sumitomo Search 60, 20–26 (1998)Google Scholar
  149. 149.
    Mattson, E.: The atmospheric corrosion properties of some common structural metals: a comparative study. Mater. Perform. 21, 9–19 (1982)Google Scholar
  150. 150.
    Bolivar, F., Morales, A.L., Aramburo, C.: Simulation of a long term atmospheric corrosion process on plain and weathering steels. Rev. Metal 265–269 (2003)Google Scholar
  151. 151.
    Uhlig, H.H.: Passivity in metals and alloys. Corros. Sci. 19:777 (1979)Google Scholar
  152. 152.
    Komori, T., Kyono, K., Kato, C.: New surface treatment technology for promoting protective rust formation on weathering steel. In:132nd Symposium Corrosion Prevention. 65–72 (2001)Google Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  1. 1.Technical FunctionsInstitute for Steel Development and GrowthKolkataIndia

Personalised recommendations