Asymptotic Properties

  • Debasis Kundu
  • Swagata Nandi
Part of the SpringerBriefs in Statistics book series (BRIEFSSTATIST)


In this chapter, we discuss asymptotic properties of some of the estimators described in Chapter 3. Asymptotic results or results based on large samples deal with properties of estimators under the assumption that the sample size increases indefinitely. The statistical models, observed in signal processing literature, are mostly very complicated non-linear models. Even a single component sinusoidal component model is highly non-linear in its frequency parameter.


Asymptotic Distribution Asymptotic Normality Asymptotic Variance Strong Consistency Sinusoidal Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kundu, D. (1993). Asymptotic theory of least squares estimators of a particular non-linear regression model. Statistics and Probability Letters, 18, 13–17.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Jennrich, R. I. (1969). Asymptotic properties of the non-linear least squares estimators. Annals of Mathematical Statistics, 40, 633–643.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Wu, C. F. J. (1981). Asymptotic theory of non-linear least squares estimation. Annals Statistics, 9, 501–513.MATHCrossRefGoogle Scholar
  4. 4.
    Whittle, P. (1952). The simultaneous estimation of a time series Harmonic component and covariance structure. Trabajos de Estadistica, 3, 43–57.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Hannan, E. J. (1971). Non-linear time series regression. Journal of Applied Probability, 8, 767–780.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Hannan, E. J. (1973). The estimation of frequency. Journal of Applied Probability, 10, 510–519.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Walker, A. M. (1971). On the estimation of a harmonic component in a time series with stationary independent residuals. Biometrika, 58, 21–36.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Rice, J. A., & Rosenblatt, M. (1988). On frequency estimation. Biometrika, 75, 477–484.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Quinn, B. G., & Fernandes, J. M. (1991). A fast efficient technique for the estimation of frequency. Biometrika, 78, 489–497.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Kundu, D. (1997). Estimating the number of sinusoids in additive white noise. Signal Processing, 56, 103–110.MATHCrossRefGoogle Scholar
  11. 11.
    Quinn, B. G. (1994). Estimating frequency by interpolation using Fourier coefficients. IEEE Transactions on Signal Processing, 42, 1264–1268.CrossRefGoogle Scholar
  12. 12.
    Kundu, D., & Mitra, A. (1996). Asymptotic theory of least squares estimates of a non-linear time series regression model. Communication in Statistics Theory and Methods, 25, 133–141.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Irizarry, R. A. (2002). Weighted estimation of harmonic components in a musical sound signal. Journal of Time Series Analysis, 23, 29–48.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Nandi, S., Iyer, S. K., & Kundu, D. (2002). Estimating the frequencies in presence of heavy tail errors. Statistics and Probability Letters, 58, 265–282.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Prasad, A., Kundu, D., & Mitra, A. (2008). Sequential estimation of the sum of sinusoidal model parameters. Journal of Statistical Planning and Inference, 138, 1297–1313.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Kundu, D., Bai, Z. D., Nandi, S., & Bai, L. (2011). Super efficient frequency Estimation. Journal of Statistical Planning and Inference, 141(8), 2576–2588.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Fuller, W. A. (1976). Introduction to statistical time series. New York: John Wiley and Sons.MATHGoogle Scholar
  18. 18.
    Samorodnitsky, G., & Taqqu, M. S. (1994). Stable non-Gaussian random processes; stochastic models with infinite variance. New York: Chapman and Hall.MATHGoogle Scholar
  19. 19.
    Bai, Z. D., Rao, C. R., Chow, M., & Kundu, D. (2003). An efficient algorithm for estimating the parameters of superimposed exponential signals. Journal of Statistical Planning and Inference, 110, 23–34.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Nandi, S., & Kundu, D. (2006). A fast and efficient algorithm for estimating the parameters of sum of sinusoidal model. Sankhya, 68, 283–306.MathSciNetMATHGoogle Scholar
  21. 21.
    Bai, Z. D., Chen, X. R., Krishnaiah, P. R., & Zhao, L. C. (1987). Asymptotic properties of EVLP estimators for superimposed exponential signals in noise. Technical Report. 87–19, CMA, U. Pittsburgh.Google Scholar
  22. 22.
    Kundu, D., & Mitra, A. (1997). Consistent methods of estimating sinusoidal frequencies; a non iterative approach. Journal of Statistical Computation and Simulation, 58, 171–194.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Kundu, D. (1994). A modified Prony algorithm for sum of damped or undamped exponential signals. Sankhya, 56, 524–544.MATHGoogle Scholar
  24. 24.
    Kannan, N., & Kundu, D. (1994). On modified EVLP and ML methods for estimating superimposed exponential signals. Signal Processing, 39, 223–233.MATHCrossRefGoogle Scholar
  25. 25.
    Truong-Van, B. (1990). A new approach to frequency analysis with amplified harmonics. Journal of the Royal Statistical Society Series B, 52, 203–221.MathSciNetMATHGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Debasis Kundu
    • 1
  • Swagata Nandi
    • 2
  1. 1.Department of Mathematics and StatisticsIndian Institute of TechnologyKanpurIndia
  2. 2.Theoretical Statistics and Mathematics UnitIndian Statistical InstituteNew DelhiIndia

Personalised recommendations