Estimation of Frequencies

  • Debasis Kundu
  • Swagata Nandi
Part of the SpringerBriefs in Statistics book series (BRIEFSSTATIST)


In this section, we provide different estimation procedures of the frequencies of a periodic signal.


Linear Prediction Expectation Maximization Algorithm Asymptotic Variance Normal Random Variable Matrix Pencil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rice, J. A., & Rosenblatt, M. (1988). On frequency estimation. Biometrika, 75, 477–484.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bai, Z. D., Chen, X. R., Krishnaiah, P. R., & Zhao, L. C. (1987). Asymptotic properties of EVLP estimators for superimposed exponential signals in noise. Technical report 87-19, CMA, University of Pittsburgh.Google Scholar
  3. 3.
    Bai, Z. D., Rao, C. R., Chow, M., & Kundu, D. (2003). An efficient algorithm for estimating the parameters of superimposed exponential signals. Journal of Statistical, Planning and Inference, 110, 23–34.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Kumaresan, R. (1982). Estimating the parameters of exponential signals. Ph.D. thesis, U. Rhode Island.Google Scholar
  5. 5.
    Tufts, D. W., & Kumaresan, R. (1982). Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood. Proceedings of the IEEE, 70, 975–989.CrossRefGoogle Scholar
  6. 6.
    Rao, C. R. (1988). Some results in signal detection. In S. S. Gupta & J. O. Berger (Eds.) Decision theory and related topics, IV (Vol. 2, pp. 319–332). New York: Springer.Google Scholar
  7. 7.
    Kundu, D., & Mitra, A. (1995). Consistent method of estimating the superimposed exponential signals. Scandinavian Journal of Statistics, 22, 73–82.MathSciNetMATHGoogle Scholar
  8. 8.
    Kundu, D., & Mitra, A. (1997). Consistent methods of estimating sinusoidal frequencies; a non iterative approach. Journal of Statistical Computation and Simulation, 58, 171–194.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Roy, R. H. (1987). ESPRIT-estimation of signal parameters via rotational invariance technique. Ph.D. thesis, Stanford UniversityGoogle Scholar
  10. 10.
    Roy, R. H., & Kailath, T. (1989). ESPRIT-Estimation of Signal Parameters via Rotational Invariance Technique. IEEE Transactions on ASSP, 43, 984–995.CrossRefGoogle Scholar
  11. 11.
    Pillai, S. U. (1989). Array processing. New York: Springer.CrossRefGoogle Scholar
  12. 12.
    Quinn, B. G. (1994). Estimating frequency by interpolation using Fourier coefficients. IEEE Transactions on Signal process, 42, 1264–1268.CrossRefGoogle Scholar
  13. 13.
    Bresler, Y., & Macovski, A. (1986). Exact maximum likelihood parameter estimation of superimposed exponential signals in noise. IEEE Transactions on ASSP, 34, 1081–1089.CrossRefGoogle Scholar
  14. 14.
    Kundu, D. (1993). Estimating the parameters of undamped exponential signals. Technometrics, 35, 215–218.MathSciNetMATHGoogle Scholar
  15. 15.
    Kundu, D. (1994). Estimating the parameters of complex valued exponential signals. Computational Statistics and Data Analysis, 18, 525–534.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kannan, N., & Kundu, D. (1994). On modified EVLP and ML methods for estimating superimposed exponential signals. Signal Processing, 39, 223–233.MATHCrossRefGoogle Scholar
  17. 17.
    Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via EM algorithm. Journal of the Royal Statistical Society Series B, 39, 1–38.MathSciNetMATHGoogle Scholar
  18. 18.
    McLachlan, G. J., & Krishnan, T. (2008). The EM algorithm and extensions. Hoboken, New Jersey: Wiley.MATHCrossRefGoogle Scholar
  19. 19.
    Feder, M., & Weinstein, E. (1988). Parameter estimation of superimposed signals using the EM algorithm. IEEE Transactions on ASSP, 36, 477–489.MATHCrossRefGoogle Scholar
  20. 20.
    Chung, K. L. (1974). A course in probability theory. New York: Academic Press.MATHGoogle Scholar
  21. 21.
    Prasad, A., Kundu, D., & Mitra, A. (2008). Sequential estimation of the sum of sinusoidal model parameters. Journal of Statistical, Planning and Inference, 138, 1297–1313.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Quinn, B. G., & Fernandes, J. M. (1991). A fast efficient technique for the estimation of frequency. Biometrika, 78, 489–497.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Truong-Van, B. (1990). A new approach to frequency analysis with amplified harmonics. Journal of the Royal Statistical Society Series B, 52, 203–221.MathSciNetMATHGoogle Scholar
  24. 24.
    Ahtola, J., & Tiao, G. C. (1987). Distributions of least squares estimators of autoregressive parameters for a process with complex roots on the unit circle. Journal of Time Series Analysis, 8, 1–14.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Irizarry, R. A. (2002). Weighted estimation of harmonic components in a musical sound signal. Journal of Time Series Analysis, 23, 29–48.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Nandi, S., & Kundu, D. (2006). A fast and efficient algorithm for estimating the parameters of sum of sinusoidal model. Sankhya, 68, 283–306.MathSciNetMATHGoogle Scholar
  27. 27.
    Kundu, D., Bai, Z. D., Nandi, S., & Bai, L. (2011). Super efficient frequency eEstimation”. Journal of Statistical, Planning and Inference, 141(8), 2576–2588.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Debasis Kundu
    • 1
  • Swagata Nandi
    • 2
  1. 1.Department of Mathematics and StatisticsIndian Institute of TechnologyKanpurIndia
  2. 2.Theoretical Statistics and Mathematics UnitIndian Statistical InstituteNew DelhiIndia

Personalised recommendations