Advertisement

Development of an Automated Examination Seating Arrangement Generation System Using Music Inspired Harmony Search Algorithm

  • Arnav Acharyya
  • Arpan Losalka
  • Pravir Singh Gupta
  • Ganapati Panda
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 130)

Abstract

This paper addresses the solution of examination seating arrangement problem using the metaheuristic music inspired Harmony Search algorithm. The objective function has been defined keeping the constraints of the problem in mind. The algorithm has been modified to suit the needs of the problem at hand, keeping the basic structure unchanged. The results obtained show an optimized seating arrangement, where none of the students appearing for the same subject have been allotted adjacent seats.

Keywords

Harmony Search Soft Constraint Hard Constraint Harmony Search Algorithm Timetabling Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: A New Heuristic Optimization Algorithm: Harmony Search. SIMULATON (2001), doi: 10.1177/003754970107600201Google Scholar
  2. 2.
    Geem, Z.W. (ed.): Music-Inspired Harmony Search Algorithm. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Geem, Z.W., Tseng, C.-L., Park, Y.-J.: Harmony search for generalized orienteering problem: Best touring in china. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 741–750. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Kim, J.H., Geem, Z.W., Kim, E.S.: Parameter estimation of the nonlinear Muskingum model using harmony search. J. Am. Water Resour. Assoc. 37(5), 1131–1138 (2001)CrossRefGoogle Scholar
  5. 5.
    Geem, Z.W., Lee, K.S., Park, Y.: Application of Harmony Search to Vehicle Routing. American Journal of Applied Sciences 2(12), 1552–1557 (2005)CrossRefGoogle Scholar
  6. 6.
    Mohammed, A.A.-B., Khader, A.T., Gani, T.A.: A harmony search algorithm for university course timetabling. In: Mohammed, A.A.-B., Khader, A.T. (eds.) Annals of Operations Research, pp. 1–29. Springer, Netherlands (2010)Google Scholar
  7. 7.
    Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Applied Mathematics and Computation 188(2), 1567–1579 (2007)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Kang, S.L., Geem, Z.W.: A new structural optimization method based on the harmony search algorithm. Comput. Struct. 82(9-10), 781–798 (2004)CrossRefGoogle Scholar
  9. 9.
    Soza, L., Becerra, C.R., Riff, M.C., Coello, C.A.C.: Solving timetabling problems using a cultural algorithm. Applied Soft Computing 11(1), 337–344 (2011)CrossRefGoogle Scholar

Copyright information

© Springer India Pvt. Ltd. 2012

Authors and Affiliations

  • Arnav Acharyya
    • 1
  • Arpan Losalka
    • 1
  • Pravir Singh Gupta
    • 1
  • Ganapati Panda
    • 1
  1. 1.Indian Institute of Technology BhubaneswarBhubaneswarIndia

Personalised recommendations