Skip to main content

Impact of Global Warming on Agricultural Product Markets: Stochastic World Food Model Analysis

  • Conference paper
  • First Online:
Adaptation and Mitigation Strategies for Climate Change
  • 1819 Accesses

Abstract

Working Group I (WGI) of the Intergovernmental Panel on Climate Change (IPCC) reports that the average air temperature at the end of the 21st century will rise by 4.0°C from current levels, according to the fossil energy intensive scenario. Agricultural production will be affected by global warming through changes in yields and market prices. The dominant factor in rising temperature is the increasing concentration of carbon dioxide (CO2), which represents the greatest exhaust quantity among the greenhouse gases (GHG) and has increased in volume from 280 ppm in the pre-industrial period to 379 ppm in 2005.

Reprinted with permission of Integrated Research System for Sustainability Science from J. Furuya and S. Kobayashi, Sustain. Sci. 4(2009) 71–79. DOI 10.1007/s11625-008-0062-0

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Furuya J, Koyama O (2005) Impacts of climatic change on world agricultural product markets: estimation of macro yield functions. Jpn Agric Res Q 39(2):121–134

    Article  Google Scholar 

  • Furuya J, Meyer SD (2008) Impacts of water cycle changes on the rice market in Cambodia: stochastic supply and demand model analysis. Paddy Water Environ 6:139–151

    Article  Google Scholar 

  • Hasegawa T, Kobayashi K, Lieffering M, Kim HY, Sakai H, Shimono H, Yamakawa Y, Yoshimoto M, Okada M (2005) Impact of increased source capacity on rice yield: case study with CO2 enrichment. In: Toriyama K, Heong KL, Hardy B (eds) Rice is life: scientific perspectives for the 21st century. International Rice Research Institute, Los Banos and Japan International Research Center for Agricultural Sciences, Tsukuba (on CD)

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) Working Group I (WGI) (2007) Technical summary, pp 69–70

    Google Scholar 

  • Jones PG, Thornton PK (2003) The potential impacts of climate change on maize production in Africa and Latin America in 2055. Glob Environ Change 13:51–59

    Article  Google Scholar 

  • Neelin JD, Münnich M, Su H, Meyerson JE, Holloway CE (2006) Tropical drying trends in global warming models and observations. Proc Natl Acad Sci USA 103(16):6110–6115

    Article  CAS  Google Scholar 

  • Oga K, Yanagishima K (1996) IFPSIM, international food and agricultural policy simulation model (user’s guide). JIRCAS Working Report no. 1

    Google Scholar 

  • Parry M, Rosenzweig C, Iglesias A, Fischer G, Livermore M (1999) Climate change and world food security: a new assessment. Glob Environ Change 9:S51–S67

    Article  Google Scholar 

  • Richardson JW, Klose SL, Gray AW (2000) An applied procedure for estimating and simulating multivariate empirical (MVE) probability distributions in farm-level risk assessment and policy analysis. J Agric Appl Econ 32(2):299–315

    Article  Google Scholar 

  • Rosenzweig C, Iglesias A, Yang XB, Epstein PR, Chivian E (2000) Climate change and U.S. agriculture: the impacts of warming and extreme weather events on productivity, plant diseases, and pests. Center for Health and the Global Environment, Harvard Medical School, Boston, USA. Available online at: http://chge.med.harvard.edu/publications/documents/agricultureclimate.pdf

  • Tyers R, Anderson K (1992) Disarray in world food markets: a quantitative assessment. Cambridge University Press, Cambridge, pp 225–232

    Google Scholar 

  • United States Department of Agriculture (USDA) (1994) Major world crop areas and climatic profiles. Agricultural Handbook, vol 664, Washington, DC

    Google Scholar 

  • Yoshimoto M, Oue H, Kobayashi K (2005) Energy balance and water use efficiency of rice canopies under free-air CO2 enrichment. Agric For Meteorol 133:226–246

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. M. Nishimori of the National Institute for Agro-Environmental Sciences for providing climate forecasting data for the A2 scenario from HadCM3 and actual data from the DDC. He calculated the average of these climate variables in each country and regions for flowering or silking seasons based on the cropping map of the US Department of Agriculture (USDA) (1994). We also thank Dr. S. D. Meyer of the Food and Agricultural Policy Research Institute at the University of Missouri for providing information on the procedure for multivariate stochastic simulation. This research is conducted by Project S4 of the Global Environment Research Fund of the Ministry of the Environment of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Furuya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 The Author(s)

About this paper

Cite this paper

Furuya, J., Kobayashi, S. (2010). Impact of Global Warming on Agricultural Product Markets: Stochastic World Food Model Analysis. In: Sumi, A., Fukushi, K., Hiramatsu, A. (eds) Adaptation and Mitigation Strategies for Climate Change. Springer, Tokyo. https://doi.org/10.1007/978-4-431-99798-6_2

Download citation

Publish with us

Policies and ethics