Skip to main content
  • 1077 Accesses

Abstract

Blood is composed of blood cells suspended in plasma. The viscosity of blood varies with clinical conditions that influence blood cell aggregation and the hematocrit, and involves hemodynamic changes in vessels directly [1–3]. Generally, in arteries with diameters larger than 3 mm, the viscosity of blood is essentially constant when the shear rate exceeds 100 s−1 [4]. By contrast, in capillaries with diameters smaller than 400 μm, the decrease in the vessel diameter reduces the viscosity of blood by redistributing blood cells at the center of the vessel [5]. Therefore, we should consider non-Newtonian blood flow behavior according to the flow conditions in blood vessels. This section briefly describes the basics of fluid mechanics that might be useful for understanding cerebral hemodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Isogai Y, Yokose T, Maeda T et al (1984) The OP-Rheometer system, a new device for analysis of viscosity and viscoelasticity of blood: description and clinical application. Biorheology 1:s35–s41

    Google Scholar 

  2. De Backer TL, De Buyzere M, Segers P et al (2002) The role of whole blood viscosity in premature coronary artery disease in women. Atherosclerosis 165:367–373

    Article  PubMed  Google Scholar 

  3. von Tempelhoff G, Nieman F, Heilmann L et al (2000) Association between blood rheology, thrombosis and cancer survival in patients with gynecologic malignancy. Clin Hemorheol Microcirc 22:107–130

    Google Scholar 

  4. Brooks DE, Goodwin JW, Seaman GVF (1970) Interactions among erythrocytes under shear. J Appl Physiol 28:172–177

    PubMed  CAS  Google Scholar 

  5. Gupta BB, Seshadri V (1977) Flow of red blood-cell suspensions through narrow tubes. Biorheology 14:133–143

    PubMed  Google Scholar 

  6. Fox RW, McDonald AT (1998) Introduction to fluid mechanics, 5th edn. Wiley, New York

    Google Scholar 

  7. Cho YI, Kensey KR (1991) Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. 1. Steady flows. Biorheology 28:241–262

    PubMed  CAS  Google Scholar 

  8. White FM (1991) Viscous fluid flow. McGraw-Hill, Singapore

    Google Scholar 

  9. Malek AM, Alper SL, Izumo S (2009) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042

    Article  Google Scholar 

  10. Nichols WW, O'Rourke MF (2005) McDonald's blood flow in arteries, 5th edn. Oxford University Press, New York

    Google Scholar 

  11. Lanne T, Stale H, Bengtsson H et al (1992) Noninvasive measurement of diameter changes in the distal abdominal aorta in man. Ultrasound Med Biol 18:451–457

    Article  PubMed  CAS  Google Scholar 

  12. Celermajer DS, Sorensen KE, Bull C (1994) Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J Am Coll Cardiol 24:1468–1474

    Article  PubMed  CAS  Google Scholar 

  13. Smith AR, Hagen TM (2003) Vascular endothelial dysfunction in aging: loss of Akt-dependent endothelial nitric oxide synthase phosphorylation and partial restoration by (R)-alpha-lipoic acid. Biochem Soc Trans 31:1447–1449

    Article  PubMed  CAS  Google Scholar 

  14. Gozna ER, Marble AE, Shaw A (1974) Age-related changes in the mechanics of the aorta and pulmonary artery of man. J Appl Physiol 36:407–411

    PubMed  CAS  Google Scholar 

  15. McGrath BP, Liang YL, Teede H (1998) Age-related deterioration in arterial structure and function in postmenopausal women: impact of hormone replacement therapy. Arterioscler Thromb Vasc Biol 18:1149–1156

    Article  PubMed  CAS  Google Scholar 

  16. Schram MT, Henry RM, van Dijk RA et al (2004) Increased central artery stiffness in impaired glucose metabolism and type 2 diabetes: the Hoorn Study. Hypertension 43:176–181

    Article  PubMed  CAS  Google Scholar 

  17. Sonesson B, Hansen F, Stale H et al (1993) Compliance and diameter in the human abdominal-aorta - the influence of age and sex. Eur J Vasc Surg 7:690–697

    Article  PubMed  CAS  Google Scholar 

  18. Agmon Y, Khandheria BK, Meissner I et al (2003) Is aortic dilatation an atherosclerosis-related process? J Am Coll Cardiol 42:1076–1083

    Article  PubMed  Google Scholar 

  19. Wilcken DEL, Guz A, Charlier AA et al (1964) Effects of alterations in aortic impedance on performance of ventricles. Circ Res 14:283–293

    Article  PubMed  CAS  Google Scholar 

  20. Finkelstein SM, Cohn JN, Collins VR et al (1985) Vascular hemodynamic impedance in congestive heart failure. Am J Cardiol 55:423–427

    Article  PubMed  CAS  Google Scholar 

  21. Stergiopulos N, Meister JJ, Westerhof N (1995) Evaluation of methods for estimation of total arterial compliance. Am J Physiol 268:H1540–1548

    PubMed  CAS  Google Scholar 

  22. Van Huis GA, Sipkema P, Westerhof N (1987) Coronary input impedance during cardiac cycle as determined by impulse response method. Am J Physiol 253:H317–324

    PubMed  Google Scholar 

  23. Lee SW, Antiga L, Spence JD et al (2008) Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Stroke 39:2341–2347

    Article  PubMed  Google Scholar 

  24. Zhao M, Amin-Hanjani S, Ruland S et al (2007) Regional cerebral blood flow using quantitative MR angiography. Am J Neuroradiol 28:1470–1473

    Article  PubMed  CAS  Google Scholar 

  25. Tsivgoulis G, Alexandrov AV, Sloan MA (2009) Advances in transcranial Doppler ultrasonography. Curr Neurol Neurosci Rep 9:46–54

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Bo Shim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Kim, J.C., Shim, E.B. (2010). Hemodynamics. In: Cho, BK., Tominaga, T. (eds) Moyamoya Disease Update. Springer, Tokyo. https://doi.org/10.1007/978-4-431-99703-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-99703-0_14

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-99702-3

  • Online ISBN: 978-4-431-99703-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics