Skip to main content

Chemical and physical factors affecting osteoconductivity of octacalcium phosphate bone substitute material

  • Conference paper
Interface Oral Health Science 2009
  • 520 Accesses

Abstract

The present article summarizes the factors controlling osteoconductive and biodegradable characteristics of synthetic octacalcium phosphate (OCP) when implanted in bone defects. OCP is a transient precursor, which tends to convert to hydroxyapatite (HA) in physiological environment. We recently confirmed that the subtle change of stoichiometry of OCP from Ca/P molar ratio 1.28 to 1.37, both of which are nonstoichiometric compositions compared to stoichiometric 1.33 of OCP, obtained by partial hydrolysis, makes it reduce the crystallinity and raises the bone formation rate significantly if implanted in marrow space of rat tibia more than those of original OCP and HA obtained via OCP full hydrolysis. The composite, which consists of OCP granules and collagen sponge, is vigorously resorbed by osteoclastic cells if the thick composite is implanted in subperiosteal area of murine calvaria but replaced with newly formed bone if the thin composite or OCP without collagen is used. The results suggest that the physical stress, which might be induced underneath the periosteum, controls activities of osteoblasts and osteoclasts around OCP implant. The osteoconductive characteristics of OCP appear to be controlled by its stoichiometry and the mechanical stimulation induced from surrounding tissue where OCP is implanted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown WE, Smith JP, Lehr JR, Frazier AW (1962) Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature 196:1050–1055

    Article  Google Scholar 

  2. Barrere F, van der Valk CM, Dalmeijer RA, van Blitterswijk CA, de Groot K, Layrolle P (2003) In vitro and in vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants. J Biomed Mater Res A 64:378–387

    Article  PubMed  Google Scholar 

  3. Suzuki O, Nakamura M, Miyasaka Y, Kagayama M, Sakurai M (1991) Bone formation on synthetic precursors of hydroxyapatite. Tohoku J Exp Med 164:37–50

    Article  PubMed  Google Scholar 

  4. Kamakura S, Sasano Y, Homma H, Suzuki O, Kagayama M, Motegi K (1999) Implantation of octacalcium phosphate (OCP) in rat skull defects enhances bone repair. J Dent Res 78:1682–1687

    Article  PubMed  Google Scholar 

  5. Suzuki O, Kamakura S, Katagiri T, Nakamura M, Zhao B, Honda Y, Kamijo R (2006) Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials 27:2671–2681

    Article  PubMed  Google Scholar 

  6. Anada T, Kumagai T, Honda Y, Masuda T, Kamijo R, Kamakura S, Yoshihara N, Kuriyagawa T, Shimauchi H, Suzuki O (2008) Dose-dependent osteogenic effect of octacalcium phosphate on mouse bone marrow stromal cells. Tissue Eng Part A 14:965–978

    Article  PubMed  Google Scholar 

  7. Takami M, Mochizuki A, Yamada A, Tachi K, Zhao B, Miyamoto Y, Anada T, Honda Y, Inoue T, Nakamura M, Suzuki O, Kamijo R (2009) Osteoclast differentiation induced by synthetic octacalcium phosphate through RANKL expression in osteoblasts. Tissue Eng Part A. doi:10.1089/ten.TEA.2009.0065 (in press)

    Google Scholar 

  8. Miyatake N, Kishimoto KN, Anada T, Imaizumi H, Itoi E, Suzuki O (2009) Effect of partial hydrolysis of octacalcium phosphate on its osteoconductive characteristics. Biomaterials 30:1005–1014

    Article  PubMed  Google Scholar 

  9. Suzuki Y, Kamakura S, Honda Y, Anada T, Hatori K, Sasaki K, Suzuki O (2009) Appositional bone formation by OCP-collagen composite. J Dent Res 88:1107–1112

    Article  PubMed  Google Scholar 

  10. Matsui A, Anada T, Masuda T, Honda Y, Miyatake N, Kawai T, Kamakura S, Echigo S, Suzuki O (2009) Mechanical stress-related calvaria bone augmentation by onlayed octacalcium phosphate-collagen implant. Tissue Eng Part A. doi:10.1089/ten.TEA.2009.0284 (in press)

    Google Scholar 

  11. Kikawa T, Kashimoto O, Imaizumi H, Kokubun S, Suzuki O (2009) Intramembranous bone tissue response to biodegradable octacalcium phosphate implant. Acta Biomater 5:1756–1766

    Article  PubMed  Google Scholar 

  12. Imaizumi H, Sakurai M, Kashimoto O, Kikawa T, Suzuki O (2006) Comparative study on osteoconductivity by synthetic octacalcium phosphate and sintered hydroxyapatite in rabbit bone marrow. Calcif Tissue Int 78:45–54

    Article  PubMed  Google Scholar 

  13. Takeshita N, Akagi T, Yamasaki M, Ozeki T, Nojima T, Hiramatsu Y, Nagai N (1992) Osteoclastic features of multinucleated giant cells responding to synthetic hydroxyapatite implanted in rat jaw bone. J Electron Microsc (Tokyo) 41:141–146

    Google Scholar 

  14. Suzuki O (2009) Biological role of synthetic octacalcium phosphate in bone formation and mineralization. J Oral Biosci (in press)

    Google Scholar 

  15. Mathew M, Brown W, Schroeder L, Dickens B (1988) Crystal structure of octacalcium bis(hydrogenphosphate) tetrakis(phosphate)pentahydrate, Ca8(HPO4)2(PO4)4•5H2O. J Chem Crystallogr 18:235–250

    Google Scholar 

  16. Suzuki O, Yagishita H, Amano T, Aoba T (1995) Reversible structural changes of octacalcium phosphate and labile acid phosphate. J Dent Res 74:1764–1769

    Article  PubMed  Google Scholar 

  17. Brown WE, Mathew M, Tung MS (1981) Crystal chemistry of octacalcium phosphate. Prog Crystal Growth Charact 4:59–87

    Article  Google Scholar 

  18. LeGeros RZ, Daculsi G, Orly I, Abergas T, Torres W (1989) Solution-mediated transformation of octacalcium phosphate (OCP) to apatite. Scan Electron Microsc 3:129–137 discussion 137–138

    Google Scholar 

  19. Suzuki O, Kamakura S, Katagiri T (2006) Surface chemistry and biological responses to synthetic octacalcium phosphate. J Biomed Mater Res B Appl Biomater 77:201–212

    PubMed  Google Scholar 

  20. Suzuki O, Nakamura M, Miyasaka Y, Kagayama M, Sakurai M (1993) Maclura pomifera agglutinin-binding glycoconjugates on converted apatite from synthetic octacalcium phosphate implanted into subperiosteal region of mouse calvaria. Bone Miner 20:151–166

    Article  PubMed  Google Scholar 

  21. Tseng YH, Mou CY, Chan JC (2006) Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: a mechanistic model for central dark line formation. J Am Chem Soc 128:6909–6918

    Article  PubMed  Google Scholar 

  22. Suzuki O, Imaizumi H, Kamakura S, Katagiri T (2008) Bone regeneration by synthetic octacalcium phosphate and its role in biological mineralization. Curr Med Chem 15:305–313

    Article  PubMed  Google Scholar 

  23. He G, Dahl T, Veis A, George A (2003) Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nat Mater 2:552–558

    Article  PubMed  Google Scholar 

  24. Moradian-Oldak J, Iijima M, Bouropoulos N, Wen HB (2003) Assembly of amelogenin proteolytic products and control of octacalcium phosphate crystal morphology. Connect Tissue Res 44(Suppl 1):58–64

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grants-in-Aid (17076001, 19390490, 20659304) from the Ministry of Education, Science, Sports, and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this paper

Cite this paper

Suzuki, O. (2010). Chemical and physical factors affecting osteoconductivity of octacalcium phosphate bone substitute material. In: Sasano, T., Suzuki, O. (eds) Interface Oral Health Science 2009. Springer, Tokyo. https://doi.org/10.1007/978-4-431-99644-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-99644-6_14

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-99643-9

  • Online ISBN: 978-4-431-99644-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics