Science, Conservation, and Camera Traps

  • James D. Nichols
  • K. Ullas Karanth
  • Allan F. O’Connell


Biologists commonly perceive camera traps as a new tool that enables them to enter the hitherto secret world of wild animals. Camera traps are being used in a wide range of studies dealing with animal ecology, behavior, and conservation. Our intention in this volume is not to simply present the various uses of camera traps, but to focus on their use in the conduct of science and conservation. In this chapter, we provide an overview of these two broad classes of endeavor and sketch the manner in which camera traps are likely to be able to contribute to them. Our main point here is that neither photographs of individual animals, nor detection history data, nor parameter estimates generated from detection histories are the ultimate objective of a camera trap study directed at either science or management. Instead, the ultimate objectives are best viewed as either gaining an understanding of how ecological systems work (science) or trying to make wise decisions that move systems from less desirable to more desirable states (conservation, management). Therefore, we briefly describe here basic approaches to science and management, emphasizing the role of field data and associated analyses in these processes. We provide examples of ways in which camera trap data can inform science and management.


Management Action Adaptive Management Prey Density Model Weight Camera Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amstrup, S. C., T. L. McDonald, and B. F. J. Manly. 2005. Handbook of capture-recapture analysis. Princeton University Press, Princeton, NJGoogle Scholar
  2. Boulinier, T., J. D. Nichols, J. R. Sauer, J. E. Hines, and K. H. Pollock. 1998. Estimating species richness: the importance of heterogeneity in species detectability. Ecology 79:1018–1028CrossRefGoogle Scholar
  3. Burnham, K. P. and D. R. Anderson. 2002. Model selection and multi-model inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  4. Burnham, K. P. and W. S. Overton. 1979. Robust estimation of population size when capture probabilities vary among animals. Ecology 60:927–936Google Scholar
  5. Carbone, C., S. Christie, T. Coulson, N. Franklin, J. Ginsberg, M. Griffiths, J. Holden, K. Kawanishi, M. Kinnaird, R. Laidlaw, A. Lynam, D. W. Macdonald, D. Martyr, C. McDougal, L. Nath, T. Obrien, J. Seidensticker, D. Smith, M. Sunquist, R. Tilson, and W. N. W. Shahruddin. 2001. The use of photographic rates to estimate densities of tigers and other cryptic mammals. Animal Conservation 4:75–79CrossRefGoogle Scholar
  6. Chamberlin, T. C. 1897. The method of multiple working hypotheses. Journal of Geology 5:837–848CrossRefGoogle Scholar
  7. Dillon, A. and M. J. Kelly. 2007. Ocelot Leopardis pardalis in Belize: the impact of trap spacing and distance moved on density estimates. Oryx 41:1–9CrossRefGoogle Scholar
  8. Dorazio, R. M. and J. A. Royle. 2005. Estimating size and composition of biological communities by modeling the occurrence of species. Journal of the American Statistical Association 100:389–398CrossRefGoogle Scholar
  9. Hilborn, R. and M. Mangel. 1997. The ecological detective. Confronting models with data. Princeton University Press, Princeton, NJGoogle Scholar
  10. Jenelle, C. S., M. C. Runge, and D. I. MacKenzie. 2002. The use of photographic rates to estimate densities of tigers and other cryptic animals: a comment on misleading conclusions. Animal Conservation 5:119–120CrossRefGoogle Scholar
  11. Johnson, F. A. 2006. Adaptive harvest management and double-loop learning. Transactions of the North American Wildlife and Natural Resources Conference 71:197–213Google Scholar
  12. Karanth, K. U. 1995. Estimating tiger Panthera tigris populations from camera-trap data using capture-recapture models. Biological Conservation 71:333–338CrossRefGoogle Scholar
  13. Karanth, K. U. and J. D. Nichols. 1998. Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79:2852–2862CrossRefGoogle Scholar
  14. Karanth, K. U., J. D. Nichols, N. S. Kumar, W. A. Link, and J. E. Hines. 2004a. Tigers and their prey: predicting carnivore densities from prey abundance. Proceedings of the National Academy of Sciences 101:4854–4858CrossRefGoogle Scholar
  15. Karanth, K. U., J. D. Nichols, and N. S. Kumar. 2004b. Photographic sampling of elusive mammals in tropical forests. Pages 229–247 in W. L. Thompson, editor. Sampling rare or elusive populations. Island Press, Washington, DCGoogle Scholar
  16. Karanth, K. U., J. D. Nichols, N. S. Kumar, and J. E. Hines. 2006. Assessing tiger population dynamics using photographic capture-recapture sampling. Ecology 87:2925–2937PubMedCrossRefGoogle Scholar
  17. Kawanishi, K. and M. E. Sunquist. 2004. Conservation status of tigers in a primary rainforest of Peninsular Malaysia. Biological Conservation 120:329–344CrossRefGoogle Scholar
  18. Kendall, W. L. 2001. Using models to facilitate complex decisions. Pages 147–170 in T. M. Shenk and A. B. Franklin, editors. Modeling in natural resource management: development, interpretation and application. Island Press, Washington, DCGoogle Scholar
  19. Levins, R. 1966. The strategy of model building in population biology. American Scientist 54:421–431Google Scholar
  20. MacKenzie, D. I., J. D. Nichols, N. Sutton, K. Kawanishi, and L. L. Bailey. 2005. Suggestions for dealing with detection probability in population studies of rare species. Ecology 86:1101–1113CrossRefGoogle Scholar
  21. MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. H. Pollock, L. A. Bailey, and J. E. Hines. 2006. Occupancy modeling and estimation. Academic, San Diego, CAGoogle Scholar
  22. Nichols, J. D. 2001. Using models in the conduct of science and management of natural resources. Pages 11–34 in T. M. Shenk and A. B. Franklin, editors. Modeling in natural resource management: development, interpretation and application. Island Press, Washington, DCGoogle Scholar
  23. Nichols, J. D. and M. J. Conroy. 1996. Estimation of species richness. Pages 227–234 in D. Wilson et al., editors. Measuring and monitoring biological diversity: standard methods for mammals. Smithsonian Institution Press, Washington, DCGoogle Scholar
  24. Nichols, J. D. and K. U. Karanth. 2002. Statistical concepts: assessing spatial distributions. Pages 29–38 in K. U. Karanth and J. D. Nichols, editors. Monitoring tigers and their prey. A manual for wildlife managers, researchers, and conservationists. Centre for Wildlife Studies, BangaloreGoogle Scholar
  25. Nichols, J. D. and B. K. Williams. 2006. Monitoring for conservation. Trends in Ecology and Evolution 21:668–673PubMedCrossRefGoogle Scholar
  26. Nichols, J. D., F. A. Johnson, and B. K. Williams. 1995. Managing North American waterfowl in the face of uncertainty. Annual Review of Ecology and Systematics 26:177–199CrossRefGoogle Scholar
  27. Nichols, J. D., T. Boulinier, J. E. Hines, K. H. Pollock, and J. R. Sauer. 1998a. Estimating rates of local extinction, colonization and turnover in animal communities. Ecological Applications 8:1213–1225CrossRefGoogle Scholar
  28. Nichols, J. D., T. Boulinier, J. E. Hines, K. H. Pollock, and J. R. Sauer. 1998b. Inference methods for spatial variation in species richness and community composition when not all species are detected. Conservation Biology 12:1390–1398CrossRefGoogle Scholar
  29. Nichols, J. D., L. L. Bailey, A. F. O’Connell, Jr., N. W. Talancy, E. H. C. Grant, A. T. Gilbert, E. Annand, T. Husband, and J. E. Hines. 2008. Occupancy estimation using multiple detection devices. Journal of Applied Ecology 45:1321–1329CrossRefGoogle Scholar
  30. O’Connell, A. F., N. W. Talancy, L. L. Bailey, J. R. Sauer, R. Cook, and A. T. Gilbert. 2006. Estimating site occupancy and detection probability parameters for mammals in a coastal ecosystem. Journal of Wildlife Management 70:1625–1633CrossRefGoogle Scholar
  31. Otis, D. L., K. P. Burnham, G. C. White, and D. R. Anderson. 1978. Statistical inference from capture data on closed animal populations. Wildlife Monographs 62:1–135Google Scholar
  32. Platt, J. R. 1964. Strong inference. Science 146:347–353PubMedCrossRefGoogle Scholar
  33. Royle, J. A. 2004. N-mixture models for estimating population size from spatially replicated counts. Biometrics 60:108–115PubMedCrossRefGoogle Scholar
  34. Royle, J. A. and R. M. Dorazio. 2008. Hierarchical modeling and inference in ecology. Academic, New YorkGoogle Scholar
  35. Royle, J. A. and J. D. Nichols. 2003. Estimating abundance from repeated presence absence data or point counts. Ecology 84:777–790CrossRefGoogle Scholar
  36. Stephens, P. A., S. W. Buskirk, G. D. Hayward, and C. M. del Rio. 2005. Information theory and hypothesis testing: a call for pluralism. Journal of Applied Ecology 42:4–12CrossRefGoogle Scholar
  37. Tobler, M. W., S. E. Carrillo-Percastegui, R. L. Pitman, R. Mares, and G. Powell. 2008. An evaluation of camera-traps for inventorying large and medium-sized terrestrial rainforest mammals. Animal Conservation 11:169–178CrossRefGoogle Scholar
  38. Walters, C. J. 1986. Adaptive management of renewable resources. MacMillan, New YorkGoogle Scholar
  39. Williams, B. K. 1996. Adaptive optimization and the harvest of biological populations. Mathematical Biosciences 136:1–20PubMedCrossRefGoogle Scholar
  40. Williams, B. K., J. D. Nichols, and M. J. Conroy. 2002. Analysis and management of animal populations. Academic, San Diego, CAGoogle Scholar
  41. Williams, B. K., R. C. Szaro, and C. D. Shapiro. 2007. Adaptive management: the US Department of the Interior technical guide. Adaptive Management Working Group, US Department of the Interior, Washington, DCGoogle Scholar
  42. Yoccoz, N. G., J. D. Nichols, and T. Boulinier. 2001. Monitoring of biological diversity in space and time. Trends in Ecology and Evolution 16:446–453CrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • James D. Nichols
    • 1
  • K. Ullas Karanth
    • 2
  • Allan F. O’Connell
    • 3
  1. 1.U.S. Geological SurveyPatuxent Wildlife Research CenterLaurelUSA
  2. 2.Wildlife Conservation Society – India ProgramCentre for Wildlife StudiesBangaloreIndia
  3. 3.U.S. Geological SurveyPatuxent Wildlife Research CenterBeltsvilleUSA

Personalised recommendations