Camera Traps in Animal Ecology and Conservation: What’s Next?

  • James D. Nichols
  • Allan F. O’Connell
  • K. Ullas Karanth


As documented in the preceding chapters, the use of camera traps in animal ­ecology has undergone an appropriate and substantive evolution. This evolution has included the general uses of camera traps and the resulting data, as well as more specific topics such as equipment and statistical inference methods. Collectively, the contributions of this volume should not be viewed as an endpoint summary, but as a milestone along this evolutionary path. The various authors have attempted to briefly summarize that evolution, to describe current methods and uses of camera trap data, and to provide some new methods that we expect to see increased use in the future. In this chapter, we use the preceding chapters to provide brief summaries of the current state of the art and science of camera trap use and then provide speculation and recommendations about changes that we anticipate and hope for in the next decade. In terms of organization, we first focus on the overall uses of camera traps and resulting data, as these uses provide the framework needed to evaluate all further methodological developments. We then ­discuss equipment and finish with a review of statistical inference methods.


Camera Trap Gentoo Penguin Occupancy Modeling Camera Trapping Geographic Position System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Borchers, D. L. and M. G. Efford. 2008. Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics 64:377–385PubMedCrossRefGoogle Scholar
  2. Burnham, K. P. and W. S. Overton. 1979. Robust estimation of population size when capture probabilities vary among animals. Ecology 60:927–936CrossRefGoogle Scholar
  3. Dillon, A. G. and M. J. Kelly. 2007. Ocelot activity, trap success, and density in Belize: the impact of trap spacing and animal movement on density estimates. Oryx 41:469–477CrossRefGoogle Scholar
  4. Dorazio, R. M. and J. A. Royle. 2003. Mixture models for estimating the size of a closed population when capture rates vary among individuals. Biometrics 59:351–364PubMedCrossRefGoogle Scholar
  5. Dorazio, R. M. and J. A. Royle. 2005. Estimating size and composition of biological communities by modeling the occurrence of species. Journal of the American Statistical Association 100:389–398CrossRefGoogle Scholar
  6. Efford, M. G. 2004. Density estimation in live-trapping studies. Oikos 106:598–610CrossRefGoogle Scholar
  7. Gardner, B., J. Reppucci, M. Lucherini, and J. A. Royle. 2010. Spatially-explicit inference for open populations: estimating demographic parameters from camera-trap studies. Ecology (in press)Google Scholar
  8. Greene, K. 2006. Technology review. Published by MIT. ( (Accessed October 2009)
  9. Hamilton, M. P., E. A. Graham, P. W. Rundel, M. F. Allen, W. Kaiser, M. H. Hansen, and D. L. Estirn. 2007. New approaches in embedded networked sensing for terrestrial ecological observatories. Environmental Engineering Science 24:192–204CrossRefGoogle Scholar
  10. Hiby, L. and P. Lovell. 1990. Computer aided matching of natural markings: a prototype system for grey seals. Reports of the International Whaling Commission, Special Issue 12:57–61Google Scholar
  11. Hiby, L. and P. Lovell. 2001. An automated system for matching the callosity patterns in aerial photographs of southern right whales. Journal of Cetacean Research and Management Special Issue 2Google Scholar
  12. Hiby, L., P. Lovell, N. Patil, N. S. Kumar, A. M. Gopalaswamy, and K. U. Karanth. 2009. A tiger cannot change its stripes: using a three-dimensional model to match images of living tigers and tiger skins. Biology Letters 5:383–386PubMedCrossRefGoogle Scholar
  13. Karanth, K. U. 1995. Estimating tiger Panthera tigris populations from camera-trap data using capture-recapture models. Biological Conservation 71:333–338Google Scholar
  14. Karanth, K. U. and J. D. Nichols. 1998. Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79:2852–2862CrossRefGoogle Scholar
  15. Karanth, K. U. and J. D. Nichols. 2000. Ecological status and conservation of tigers in India. Final Technical Report to the Division of International Conservation, U.S. Fish and Wildlife Service, Washington, D.C., and Wildlife Conservation Society, New York. Centre for Wildlife Studies, Bangalore, India. 124 ppGoogle Scholar
  16. Karanth, K. U. and J. D. Nichols, editors. 2002. Monitoring tigers and their prey. A manual for wildlife managers, researchers, and conservationists. Centre for Wildlife Studies, Bangalore, India. 193 ppGoogle Scholar
  17. Karanth, K. U., J. D. Nichols, N. S. Kumar, W. A. Link, and J. E. Hines. 2004. Tigers and their prey: predicting carnivore densities from prey abundance. Proceedings of the National Academy of Sciences USA 101:4854–4858CrossRefGoogle Scholar
  18. Karanth, K. U., J. D. Nichols, N. S. Kumar, and J. E. Hines. 2006. Assessing tiger population dynamics using photographic capture–recapture sampling. Ecology 87:2925–2937PubMedCrossRefGoogle Scholar
  19. Kelly, M. J. 2001. Computer-aided photograph matching in studies employing individual identification: an example from Serengeti cheetahs. Journal of Mammalogy 82:440–449CrossRefGoogle Scholar
  20. Kelly, M. J. 2008. Design, evaluate, refine: camera trap studies for elusive species. Animal Conservation 11:182–184CrossRefGoogle Scholar
  21. Lukacs, P. M. and K. P. Burnham. 2005. Estimating population size from DNA-based closed capture-recapture data incorporating genotyping error. Journal of Wildlife Management 69:396–403Google Scholar
  22. MacKenzie, D. I., J. D. Nichols, N. Sutton, K. Kawanishi, and L. L. Bailey. 2005. Suggestions for dealing with detection probability in population studies of rare species. Ecology 86:1101–1113CrossRefGoogle Scholar
  23. MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. H. Pollock, L. A. Bailey, and J. E. Hines. 2006. Occupancy modeling and estimation. Academic, San Diego, CA. 324 ppGoogle Scholar
  24. MacKenzie, D. I., J. D. Nichols, M. E. Seamans, and R. J. Gutierrez. 2009. Dynamic models for problems of species occurrence with multiple states. Ecology 90:823–835PubMedCrossRefGoogle Scholar
  25. Moll, R. J., J. J. Millspaugh, J. Beringer, J. Sartwell, and Z. He. 2007. A new ‘view’ of ecology and conservation through animal-borne video systems. Trends in Ecology and Evolution 22:660–668PubMedCrossRefGoogle Scholar
  26. Mondol, S., K. U. Karanth, N. S. Kumar, A. M. Gopalaswamy, A. Andheria, and U. Ramakrishnan. 2009. Evaluation of non-invasive genetic sampling methods for estimating tiger population size. Biological Conservation 142:2350–2360Google Scholar
  27. Nichols, J. D. and B. K. Williams. 2006. Monitoring for conservation. Trends in Ecology and Evolution 21:668–673PubMedCrossRefGoogle Scholar
  28. Nichols, J. D., T. Boulinier, J. E. Hines, K. H. Pollock, and J. R. Sauer. 1998. Estimating rates of local extinction, colonization and turnover in animal communities. Ecological Applications 8:1213–1225CrossRefGoogle Scholar
  29. Nichols, J. D., J. E. Hines, D. I. MacKenzie, M. E. Seamans, and R. J. Gutierrez. 2007. Occupancy estimation with multiple states and state uncertainty. Ecology 88:1395–1400PubMedCrossRefGoogle Scholar
  30. Nichols, J. D., L. L. Bailey, A. F. O’Connell, Jr., N. W. Talancy, E. H. Campbell, E. H. C. Grant, A. T. Gilbert, E. M. Annand, T. P. Husband, and J. E. Hines. 2008. Multi-scale occupancy estimation and modeling using multiple detection methods. Journal of Applied Ecology 45:1321–1329CrossRefGoogle Scholar
  31. Norris, J. L. and K. H. Pollock. 1996. Nonparametric MLE under two closed capture–recapture models with heterogeneity. Biometrics 52:639–649CrossRefGoogle Scholar
  32. O’Connell, A. F. Jr., N. W. Talancy, L. L. Bailey, J. R. Sauer, R. Cook, and A. T. Gilbert. 2006. Estimating site occupancy and detection probability parameters for meso- and large mammals in a coastal ecosystem. Journal of Wildlife Management 70:1625–1633CrossRefGoogle Scholar
  33. Pledger, S. 2000. Unified maximum likelihood estimates for closed capture–recapture models using mixtures. Biometrics 56:434–442Google Scholar
  34. Royle, J. A. and R. M. Dorazio. 2008. Hierarchical modeling and inference in ecology: the analysis of data from populations and communities. Academic, San Diego, CAGoogle Scholar
  35. Royle, J. A. and J. D. Nichols. 2003. Estimating abundance from repeated presence absence data or point counts. Ecology 84:777–790CrossRefGoogle Scholar
  36. Royle, J. A. and K. Young. 2008. A hierarchical model for spatial capture–recapture data. Ecology 89:2281–2289PubMedCrossRefGoogle Scholar
  37. Royle, J. A., J. D. Nichols, K. U. Karanth, and A. M. Gopalaswamy. 2009a. A hierarchical model for estimating density in camera trap studies. Journal of Applied Ecology 46:118–127CrossRefGoogle Scholar
  38. Royle, J. A., K. U. Karanth, A. M. Gopalaswamy, and N. S. Kumar. 2009b. Bayesian inference in camera trapping studies for a class of spatial capture–recapture models. Ecology 90:3233–3244PubMedCrossRefGoogle Scholar
  39. Sarmento, P., J. Cruz, C. Eira, and C. Fonseca. 2009. Evaluation of camera trapping for estimating red fox abundance. Journal of Wildlife Management 73:1207–1213CrossRefGoogle Scholar
  40. Singh, P., A. M. Gopalaswamy, J. A. Royle, N. S. Kumar, and K. U. Karanth. 2010. SPACECAP: a program to estimate animal abundance and density using Bayesian spatially-explicit capture-recapture models. Wildlife Conservation Society-India Program, Centre for Wildlife Studies, Bangalore, India. Version 1.0CrossRefGoogle Scholar
  41. Soisalo, M. K. and S. M. C. Cavalcanti. 2006 Estimating the density of a jaguar population in the Brazilian Pantanal using camera-traps and capture–recapture sampling in combination with GPS radio-telemetry. Biological Conservation 129:487–496CrossRefGoogle Scholar
  42. Taggart, M., E. Graham, M. Hamilton, S. Ahmadian, M. Rahimi, J. Sharon, C. Hicks, and J. King. 2007. Deployment of wireless, networked camera systems and sensors for observation of avian and reptile behavior. Page 19 in R. W. Kays and M. Wikelski, editors. Review of National Science Foundation sponsored animal tracking and physiological monitoring workshop. Report published online at
  43. Takahashi, A., K. Sato, Y. Naito, M. J. Dunn, P. N. Trathan, and J. P. Croxall. 2004. Penguin-mounted cameras glimpse underwater group behaviour. Proceedings of the Royal Society London B Biological Sciences 271:S281–S282CrossRefGoogle Scholar
  44. Takahashi, A., N. Kokubun, Y. Mori, and H. Shin. 2008. Krill-feeding behaviour of gentoo penguins as shown by animal-borne camera loggers. Polar Biology 31:1291–1294CrossRefGoogle Scholar
  45. Watanuki, Y., F. Daunt, A. Takahashi, M. Newell, S. Wanless, K. Sato, and N. Miyazaki. 2008. Microhabitat use and prey capture of a bottom-feeding top predator, the European shag, shown by camera loggers. Marine Ecology Progress Series 356:283–293CrossRefGoogle Scholar
  46. Williams, B. K., J. D. Nichols, and M. J. Conroy. 2002. Analysis and management of animal populations. Academic, San Diego. 817 ppGoogle Scholar
  47. Yoccoz, N. G., J. D. Nichols, and T. Boulinier. 2001. Monitoring of biological diversity in space and time. Trends in Ecology and Evolution 16:446–453CrossRefGoogle Scholar
  48. Yoshizaki, J., K. H. Pollock, C. Brownie, and R. A. Webster. 2009. Modeling misidentification errors in capture–recapture studies using photographic identification of evolving marks. Ecology 90:3–9CrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • James D. Nichols
    • 1
  • Allan F. O’Connell
    • 2
  • K. Ullas Karanth
    • 3
  1. 1.U.S. Geological SurveyPatuxent Wildlife Research CenterLaurelUSA
  2. 2.U.S. Geological SurveyPatuxent Wildlife Research CenterBeltsvilleUSA
  3. 3.Wildlife Conservation Society – India ProgramCentre for Wildlife StudiesBangaloreIndia

Personalised recommendations