Skip to main content

Abstract

Cameras (and in a more general sense photography) are a staple of modern society, and from an early age we have learned that these devices can document every aspect of our lives. From a societal perspective, the use of cameras in science has a long history in fields such as astronomy and medicine; amongst varied opinions, photography has been suggested as a demystifying force in nature (Marien 2002). It should come as no surprise then that advances in photography and cameras would inevitably find their way into the conservation arena, and over time, become a ­preferred tool for sampling animal populations. In recent years, the use of camera traps in the study of wild animals has undeniably improved our understanding of their ecological relationships and more recently, population dynamics. There are now literally hundreds of studies and surveys being conducted that involve camera traps, from urban parks to the most remote jungles. A search of the published literature in the Web of Science database recently pulled up 180 citations for “camera traps” over the past 5 years. In addition, the grey literature on this topic probably includes many more hundreds of contributions, especially when one considers the global interest in documenting biodiversity. Camera traps have been used to sample species ranging from the very common [e.g., white-tailed deer Odocoileus virginianus, raccoons Procyon lotor] to species that are rare, elusive, and often enigmatic [e.g., snow leopards Uncia uncia].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, D. R. 2001. The need to get the basics right in wildlife field studies. Wildlife Society Bulletin 29:1294–1297

    Google Scholar 

  • Bailey, L. L., J. E. Hines, J. D. Nichols, and D. I. MacKenzie. 2007. Sampling design trade-offs in occupancy studies with imperfect detection: examples and software. Ecological Applications 17:281–290

    Article  PubMed  Google Scholar 

  • Elphick, C. S. 2008. How you count counts: the importance of research methods in applied ecology. Journal of Applied Ecology 145:1313–1320

    Article  Google Scholar 

  • Gilbert, A. T., A. F. O’Connell, Jr., E. M. Annand, N. W. Talancy, J. R. Sauer, and J. D. Nichols. 2008. An inventory of terrestrial mammals at National Parks in the Northeast Temperate Network and Sagamore Hill National Historic Site. U.S. Geological Survey, Reston, Virginia. Scientific Investigations Report 2007–5245. 158 pp

    Google Scholar 

  • Hines, J. E., T. Boulinier, J. D. Nichols, J. R. Sauer, and K. H. Pollock. 1999. COMDYN: software to study the dynamics of animal communities using a capture–recapture approach. Bird Study 46(suppl.):S209–217

    Google Scholar 

  • Karanth, K. U. and J. D. Nichols. 1998. Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79:2852–2862

    Article  Google Scholar 

  • Karanth, K. U., J. D. Nichols, N. S. Kumar, and J. E. Hines. 2006. Assessing tiger population dynamics using photographic capture recapture sampling. Ecology 87:2925–2937

    Article  PubMed  Google Scholar 

  • Lancia, R. A., J. D. Nichols, and K. H. Pollock. 1994. Estimating the number of animals in wildlife populations. Pages 215–253 in T. Bookhout, editor. Research and management techniques for wildlife and habitats. The Wildlife Society, Bethesda, MD

    Google Scholar 

  • Lebreton, J. D., K. P. Burnham, J. Clobert, and D. R. Anderson. 1992. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs 62:1–118

    Google Scholar 

  • Long, R. A., P. MacKay, W. J. Zielinski, and J. C. Ray, editors. 2008. Noninvasive survey methods for carnivores. Island Press, Washington, DC

    Google Scholar 

  • Marien, M. W. 2002. Photography: a cultural perspective. Harry N. Abrams, Inc., New York, NY

    Google Scholar 

  • Nichols, J. D. and B. K. Williams. 2006. Monitoring for conservation. Trends in Ecology and Evolution 21:668–673

    Article  PubMed  Google Scholar 

  • O’Connell, A. F. Jr., N. W. Talancy, L. L. Bailey, J. R. Sauer, R. Cook, and A. T. Gilbert. 2006. Estimating site occupancy and detection probability parameters for mammals in a coastal ecosystem. Journal of Wildlife Management 70:1625–1633

    Article  Google Scholar 

  • Pollock, K. H. 1982. A capture–recapture design robust to unequal probability of capture. Journal of Wildlife Management 46:757–760

    Article  Google Scholar 

  • Pollock, K. H., J. D. Nichols, T. R. Simon, G. L. Farnsworth, L. L. Bailey, and J. R. Sauer. 2002. Large scale wildlife monitoring studies: statistical methods for design and analysis. Envirometrics 13:105–119

    Article  Google Scholar 

  • Romesburg, H. C. 1981. Wildlife science: gaining reliable knowledge. Journal of Wildlife Management 45:293–313

    Article  Google Scholar 

  • Royle, J. A., J. D. Nichols, K. U. Karanth, and A. Gopalaswamy. 2009. A hierarchical model for estimating density in camera-trap studies. Journal of Applied Ecology 46:118–127

    Article  Google Scholar 

  • Thompson, W. L., G. C. White, and C. Gowan. 1998. Monitoring vertebrate populations. Academic, San Diego, CA

    Google Scholar 

  • Yoccoz, N. G., J. D. Nichols, and T. Boulinier. 2001. Monitoring of biological diversity in space and time. Trends in Ecology and Evolution 16:446–453

    Article  Google Scholar 

  • Zielinski, W. J., R. L. Truex, C. V. Ogan, and K. Busse. 1997. Detection surveys for fishers and American martens in California, 1989–1994: summary and interpretations. Pages 372–392 in G. Proulx, H. N. Bryant, and P. M. Woodard, editors. Martes: taxonomy, ecology, techniques, and management. Provincial Museum of Alberta, Edmonton, AB, Canada

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan F. O’Connell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

O’Connell, A.F., Nichols, J.D., Karanth, K.U. (2011). Introduction. In: O’Connell, A.F., Nichols, J.D., Karanth, K.U. (eds) Camera Traps in Animal Ecology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-99495-4_1

Download citation

Publish with us

Policies and ethics