Transgenic Rice for Mucosal Vaccine and Immunotherapy

  • Yoshikazu Yuki
  • Fumio Takaiwa
  • Hiroshi Kiyono
Part of the Allergy Frontiers book series (ALLERGY, volume 6)


The use of recombinant allergen–based immunotherapy has improved current practical approaches to allergy treatment and has revealed potential new clinical strategies for the control of allergic diseases. Oral immunotherapy using a rice-based oral vaccine is one attractive strategy that was shown to be effective for the control of pollen allergies. When the peptides for a T cell specific to Japanese cedar (Cryptomeria japonica) pollen are expressed by transgenic rice seeds and orally administered to naïve mice, it induced oral tolerance responsible for the inhibition of the IgE-mediated allergic response, suppression of histamine production, and reduction of clinical symptoms (e.g., sneezing), thereby preventing the development of this pollen-induced allergy. The results may have important implications for the development of peptide-based mucosal vaccines and for immunotherapy to control allergic diseases. The potential of transgenic rice as a new mucosal vaccine-delivery vehicle for the control of allergies is reviewed from the perspective of future directions for the development of clinically effective allergy vaccines.


Allergic Disease Transgenic Rice Allergy Clin Immunol Japanese Cedar Rice Seed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kay, A. B., Allergy and allergic diseases. First of two parts. N Engl J Med 2001. 344: 30–37.CrossRefPubMedGoogle Scholar
  2. 2.
    Kay, A. B., Allergy and allergic diseases. Second of two parts. N Engl J Med 2001. 344: 109–113.CrossRefPubMedGoogle Scholar
  3. 3.
    Reischl, I. G., Coward, W. R. and Church, M. K., Molecular consequences of human mast cell activation following immunoglobulin E-high-affinity immunoglobulin E receptor (IgE-FcepsilonRI) interaction. Biochem Pharmacol 1999. 58: 1841–1850.CrossRefPubMedGoogle Scholar
  4. 4.
    Umetsu, D. T., McIntire, J. J., Akbari, O., Macaubas, C. and DeKruyff, R. H., Asthma: an epidemic of dysregulated immunity. Nat Immunol 2002. 3: 715–720.CrossRefPubMedGoogle Scholar
  5. 5.
    Simons, F. E., Allergic rhinobronchitis: the asthma-allergic rhinitis link. J Allergy Clin Immunol 1999. 104: 534–540.CrossRefPubMedGoogle Scholar
  6. 6.
    Larche, M. and Wraith, D. C., Peptide-based therapeutic vaccines for allergic and autoimmune diseases. Nat Med 2005. 11: S69–S76.CrossRefPubMedGoogle Scholar
  7. 7.
    Larche, M., Akdis, C. A. and Valenta, R., Immunological mechanisms of allergen-specific immunotherapy. Nat Rev Immunol 2006. 6: 761–771.CrossRefPubMedGoogle Scholar
  8. 8.
    Moingeon, P., Batard, T., Fadel, R., Frati, F., Sieber, J. and Van Overtvelt, L., Immune mechanisms of allergen-specific sublingual immunotherapy. Allergy 2006. 61: 151–165.CrossRefPubMedGoogle Scholar
  9. 9.
    Canonica, G. W. and Passalacqua, G., Noninjection routes for immunotherapy. J Allergy Clin Immunol 2003. 111: 437–448; quiz 449.CrossRefPubMedGoogle Scholar
  10. 10.
    Niederberger, V., Horak, F., Vrtala, S., Spitzauer, S., Krauth, M. T., Valent, P., Reisinger, J., Pelzmann, M., Hayek, B., Kronqvist, M., Gafvelin, G., Gronlund, H., Purohit, A., Suck, R., Fiebig, H., Cromwell, O., Pauli, G., van Hage-Hamsten, M. and Valenta, R., Vaccination with genetically engineered allergens prevents progression of allergic disease. Proc Natl Acad Sci U S A 2004. 101 Suppl 2: 14677–14682.CrossRefPubMedGoogle Scholar
  11. 11.
    Wallner, B. P. and Gefter, M. L., Peptide therapy for treatment of allergic diseases. Clin Immunol Immunopathol 1996. 80: 105–109.CrossRefPubMedGoogle Scholar
  12. 12.
    Haselden, B. M., Kay, A. B. and Larche, M., Peptide-mediated immune responses in specific immunotherapy. Int Arch Allergy Immunol 2000. 122: 229–237.CrossRefPubMedGoogle Scholar
  13. 13.
    Takagi, H., Hiroi, T., Yang, L., Tada, Y., Yuki, Y., Takamura, K., Ishimitsu, R., Kawauchi, H., Kiyono, H. and Takaiwa, F., A rice-based edible vaccine expressing multiple T cell epitopes induces oral tolerance for inhibition of Th2-mediated IgE responses. Proc Natl Acad Sci U S A 2005. 102: 17525–17530.CrossRefPubMedGoogle Scholar
  14. 14.
    Takagi, H., Saito, S., Yang, L., Nagasaka, S., Nishizawa, N. and Takaiwa, F., Oral immuno-therapy against a pollen allergy using a seed-based peptide vaccine. Plant Biotechnol J 2005. 3: 521–533.CrossRefPubMedGoogle Scholar
  15. 15.
    Mayer, L. and Shao, L., Therapeutic potential of oral tolerance. Nat Rev Immunol 2004. 4: 407–419.CrossRefPubMedGoogle Scholar
  16. 16.
    McGhee, J. R., Michalek, S. M., Kiyono, H., Eldridge, J. H., Colwell, D. E., Williamson, S. I., Wannemuehler, M. J., Jirillo, E., Mosteller, L. M., Spalding, D. M., et al., Mucosal immu-noregulation: environmental lipopolysaccharide and GALT T lymphocytes regulate the IgA response. Microbiol Immunol 1984. 28: 261–280.PubMedGoogle Scholar
  17. 17.
    Yuki, Y. and Kiyono, H., New generation of mucosal adjuvants for the induction of protective immunity. Rev Med Virol 2003. 13: 293–310.CrossRefPubMedGoogle Scholar
  18. 18.
    Yuki, Y., Nochi, T. and Kiyono, H., Progress towards an AIDS mucosal vaccine: an overview. Tuberculosis (Edinb) 2007. 87 Suppl 1: S35–S44.CrossRefGoogle Scholar
  19. 19.
    Neutra, M. R. and Kozlowski, P. A., Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 2006. 6: 148–158.CrossRefPubMedGoogle Scholar
  20. 20.
    Kunisawa, J. and Kiyono, H., A marvel of mucosal T cells and secretory antibodies for the creation of first lines of defense. Cell Mol Life Sci 2005. 62: 1308–1321.CrossRefPubMedGoogle Scholar
  21. 21.
    Kiyono, H. and Fukuyama, S., NALT- versus Peyer's-patch-mediated mucosal immunity. Nat Rev Immunol 2004. 4: 699–710.CrossRefPubMedGoogle Scholar
  22. 22.
    Kunisawa, J., Kurashima, Y., Gohda, M., Higuchi, M., Ishikawa, I., Miura, F., Ogahara, I. and Kiyono, H., Sphingosine 1-phosphate regulates peritoneal B-cell trafficking for subsequent intestinal IgA production. Blood 2007. 109: 3749–3756.CrossRefPubMedGoogle Scholar
  23. 23.
    23 Kunisawa, J., Gohda, M., Kurashima, Y., Ishikawa, I., Higuchi, M. and Kiyono, H., Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NF{kappa}B-inducing kinase in stromal cells. Blood 2008. 111: 4646–4652.CrossRefPubMedGoogle Scholar
  24. 24.
    Kunisawa J., Kurashima, Y., Higuchi, M., Gohda, M., Ishikawa, I., Ogahara, I., Kim, N., Shimizu, M. and Kiyono, H., Sphingosine 1-phosphate dependence in the regulation of lymphocyte trafficking to the gut epithelium. J Exp Med 2007. 204: 2335–2348.CrossRefPubMedGoogle Scholar
  25. 25.
    Czerkinsky, C., Anjuere, F., McGhee, J. R., George-Chandy, A., Holmgren, J., Kieny, M. P., Fujiyashi, K., Mestecky, J. F., Pierrefite-Carle, V., Rask, C. and Sun, J. B., Mucosal immunity and tolerance: relevance to vaccine development. Immunol Rev 1999. 170: 197–222.CrossRefPubMedGoogle Scholar
  26. 26.
    Weiner, H. L., Friedman, A., Miller, A., Khoury, S. J., Sabbagh, A., Santos, L., Sayegh, M., Nussenblatt, R. B., Trentham, D. E. and Hafler, D. A. Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu Rev Immunol 1994. 12: 809–837.CrossRefPubMedGoogle Scholar
  27. 27.
    Kiyono, H., Kunisawa, J., McGhee, J. R. and Mestecky, J. The mucosal immune system: In Fundamental Immunology, Paul, W.E (ed). Lippincott, Williams & Wilkins, Philadelphia, 2008, pp 983–1030Google Scholar
  28. 28.
    Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A. and Weiner, H. L., Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994. 265: 1237–1240.CrossRefPubMedGoogle Scholar
  29. 29.
    Marth, T., Zeitz, Z., Ludviksson, B., Strober, W. and Kelsall, B., Murine model of oral tolerance. Induction of Fas-mediated apoptosis by blockade of interleukin-12. Ann N Y Acad Sci 1998. 859: 290–294.CrossRefPubMedGoogle Scholar
  30. 30.
    Chen, Y., Inobe, J., Marks, R., Gonnella, P., Kuchroo, V. K. and Weiner, H. L., Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 1995. 376: 177–180.CrossRefPubMedGoogle Scholar
  31. 31.
    Robinson, D. S., Larche, M. and Durham, S. R., Tregs and allergic disease. J Clin Invest 2004. 114: 1389–1397.PubMedGoogle Scholar
  32. 32.
    Zhang, X., Izikson, L., Liu, L. and Weiner, H. L., Activation of CD25(+) CD4(+) regulatory T cells by oral antigen administration. J Immunol 2001. 167: 4245–4253.PubMedGoogle Scholar
  33. 33.
    Sakaguchi, S., Regulatory T cells: key controllers of immunologic self-tolerance. Cell 2000. 101: 455–458.CrossRefPubMedGoogle Scholar
  34. 34.
    Sakaguchi, S., Ono, M., Setoguchi, R., Yagi, H., Hori, S., Fehervari, Z., Shimizu, J., Takahashi, T. and Nomura, T., Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 2006. 212: 8–27.CrossRefPubMedGoogle Scholar
  35. 35.
    Sakaguchi, S., Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004. 22: 531–562.CrossRefPubMedGoogle Scholar
  36. 36.
    Sundstedt, A., O'Neill, E. J., Nicolson, K. S. and Wraith, D. C., Role for IL-10 in suppression mediated by peptide-induced regulatory T cells in vivo. J Immunol 2003. 170: 1240–1248.PubMedGoogle Scholar
  37. 37.
    Patriarca G., Nucera, E., Roncallo, C., Pollastrini, E., Bartolozzi, F., De Pasquale, T., Buonomo, A., Gasbarrini, G., Di Campli, C. and Schiavino, D., Oral desensitizing treatment in food allergy: clinical and immunological results. Aliment Pharmacol Ther 2003. 17: 459–465.CrossRefPubMedGoogle Scholar
  38. 38.
    Hoyne, G. F., O'Hehir, R. E., Wraith, D. C., Thomas, W. R. and Lamb, J. R., Inhibition of T cell and antibody responses to house dust mite allergen by inhalation of the dominant T cell epitope in naive and sensitized mice. J Exp Med 1993. 178: 1783–1788.CrossRefPubMedGoogle Scholar
  39. 39.
    Alexander, C., Tarzi, M., Larche, M. and Kay, A. B., The effect of Fel d 1-derived T-cell peptides on upper and lower airway outcome measurements in cat-allergic subjects. Allergy 2005. 60: 1269–1274.CrossRefPubMedGoogle Scholar
  40. 40.
    Meglio, P., Bartone, E., Plantamura, M., Arabito, E. and Giampietro, P. G., A protocol for oral desensitization in children with IgE-mediated cow's milk allergy. Allergy 2004. 59: 980–987.CrossRefPubMedGoogle Scholar
  41. 41.
    Valenta, R. and Niederberger, V., Recombinant allergens for immunotherapy. J Allergy Clin Immunol 2007. 119: 826–830.CrossRefPubMedGoogle Scholar
  42. 42.
    Oldfield, W. L., Kay, A. B. and Larche, M., Allergen-derived T cell peptide-induced late asthmatic reactions precede the induction of antigen-specific hyporesponsiveness in atopic allergic asthmatic subjects. J Immunol 2001. 167: 1734–1739.PubMedGoogle Scholar
  43. 43.
    Oldfield, W. L., Larche, M. and Kay, A. B., Effect of T-cell peptides derived from Fel d 1 on allergic reactions and cytokine production in patients sensitive to cats: a randomised controlled trial. Lancet 2002. 360: 47–53.CrossRefPubMedGoogle Scholar
  44. 44.
    Yoshitomi, T., Nakagami, Y., Hirahara, K., Taniguchi, Y., Sakaguchi, M. and Yamashita, M., Intraoral administration of a T-cell epitope peptide induces immunological tolerance in Cry j 2-sensitized mice. J Pept Sci 2007. 13: 499–503.CrossRefPubMedGoogle Scholar
  45. 45.
    Hirahara, K., Saito, S., Serizawa, N., Sasaki, R., Sakaguchi, M., Inouye, S., Taniguchi, Y., Kaminogawa, S. and Shiraishi, A., Oral administration of a dominant T-cell determinant pep-tide inhibits allergen-specific TH1 and TH2 cell responses in Cry j 2-primed mice. J Allergy Clin Immunol 1998. 102: 961–967.CrossRefPubMedGoogle Scholar
  46. 46.
    Sun, J. B., Raghavan, S., Sjoling, A., Lundin, S. and Holmgren, J., Oral tolerance induction with antigen conjugated to cholera toxin B subunit generates both Foxp3 + CD25+ and Foxp3-CD25- CD4+ regulatory T cells. J Immunol 2006. 177: 7634–7644.PubMedGoogle Scholar
  47. 47.
    Sun, J. B., Rask, C., Olsson, T., Holmgren, J. and Czerkinsky, C., Treatment of experimental autoimmune encephalomyelitis by feeding myelin basic protein conjugated to cholera toxin B subunit. Proc Natl Acad Sci U S A 1996. 93: 7196–7201.CrossRefPubMedGoogle Scholar
  48. 48.
    Rask, C., Holmgren, J., Fredriksson, M., Lindblad, M., Nordstrom, I., Sun, J. B. and Czerkinsky, C., Prolonged oral treatment with low doses of allergen conjugated to cholera toxin B subunit suppresses immunoglobulin E antibody responses in sensitized mice. Clin Exp Allergy 2000. 30: 1024–1032.CrossRefPubMedGoogle Scholar
  49. 49.
    Streatfield, S. J. and Howard, J. A., Plant-based vaccines. Int J Parasitol 2003. 33: 479–493.CrossRefPubMedGoogle Scholar
  50. 50.
    Walmsley, A. M. and Arntzen, C. J., Plant cell factories and mucosal vaccines. Curr Opin Biotechnol 2003. 14: 145–150.CrossRefPubMedGoogle Scholar
  51. 51.
    Walmsley, A. M. and Arntzen, C. J., Plants for delivery of edible vaccines. Curr Opin Biotechnol 2000. 11: 126–129.CrossRefPubMedGoogle Scholar
  52. 52.
    Nochi, T., Takagi, H., Yuki, Y., Yang, L., Masumura, T., Mejima, M., Nakanishi, U., Matsumura, A., Uozumi, A., Hiroi, T., Morita, S., Tanaka, K., Takaiwa, F. and Kiyono, H., From the cover: rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. Proc Natl Acad Sci U S A 2007. 104: 10986–10991.CrossRefPubMedGoogle Scholar
  53. 53.
    Streatfield, S. J., Jilka, J. M., Hood, E. E., Turner, D. D., Bailey, M. R., Mayor, J. M., Woodard, S. L., Beifuss, K. K., Horn, M. E., Delaney, D. E., Tizard, I. R. and Howard, J. A., Plant-based vaccines: unique advantages. Vaccine 2001. 19: 2742–2748.CrossRefPubMedGoogle Scholar
  54. 54.
    Yamagata, H. and Tanaka, K., The site of synthesis and accumulation of rice storage proteins. Plant Cell Physiol 1986. 27: 135–145.Google Scholar
  55. 55.
    Katsube, T., Kurisaka, N., Ogawa, M., Maruyama, N., Ohtsuka, R., Utsumi, S. and Takaiwa, F., Accumulation of soybean glycinin and its assembly with the glutelins in rice. Plant Physiol 1999. 120: 1063–1074.CrossRefPubMedGoogle Scholar
  56. 56.
    Kaneko, Y., Motohashi, Y., Nakamura, H., Endo, T. and Eboshida, A., Increasing prevalence of Japanese cedar pollinosis: a meta-regression analysis. Int Arch Allergy Immunol 2005. 136: 365–371.CrossRefPubMedGoogle Scholar
  57. 57.
    Yoshitomi, T., Hirahara, K., Kawaguchi, J., Serizawa, N., Taniguchi, Y., Saito, S., Sakaguchi, M., Inouye, S. and Shiraishi, A., Three T-cell determinants of Cry j 1 and Cry j 2, the major Japanese cedar pollen antigens, retain their immunogenicity and tolerogenicity in a linked peptide. Immunology 2002. 107: 517–522.CrossRefPubMedGoogle Scholar
  58. 58.
    Sone, T., Morikubo, K., Miyahara, M., Komiyama, N., Shimizu, K., Tsunoo, H. and Kino, K., T cell epitopes in Japanese cedar (Cryptomeria japonica) pollen allergens: choice of major T cell epitopes in Cry j 1 and Cry j 2 toward design of the peptide-based immuno-therapeutics for the management of Japanese cedar pollinosis. J Immunol 1998. 161: 448–457.PubMedGoogle Scholar
  59. 59.
    Hirahara, K., Tatsuta, T., Takatori, T., Ohtsuki, M., Kirinaka, H., Kawaguchi, J., Serizawa, N., Taniguchi, Y., Saito, S., Sakaguchi, M., Inouye, S. and Shiraishi, A., Preclinical evaluation of an immunotherapeutic peptide comprising 7 T-cell determinants of Cry j 1 and Cry j 2, the major Japanese cedar pollen allergens. J Allergy Clin Immunol 2001. 108: 94–100.CrossRefPubMedGoogle Scholar
  60. 60.
    Takaiwa, F., A rice-based edible vaccine expressing multiple T-cell epitopes to induce oral tolerance and inhibit allergy. Immunol Allergy Clin North Am 2007. 27: 129–139.CrossRefPubMedGoogle Scholar
  61. 61.
    Iwasaki, M., Saito, K., Takemura, M., Sekikawa, K., Fujii, H., Yamada, Y., Wada, H., Mizuta, K., Seishima, M. and Ito, Y., TNF-alpha contributes to the development of allergic rhinitis in mice. J Allergy Clin Immunol 2003. 112: 134–140.CrossRefPubMedGoogle Scholar
  62. 62.
    Smart, V., Foster, P. S., Rothenberg, M. E., Higgins, T. J. and Hogan, S. P., A plant-based allergy vaccine suppresses experimental asthma via an IFN-gamma and CD4 + CD45RBlow T cell-dependent mechanism. J Immunol 2003. 171: 2116–2126.PubMedGoogle Scholar
  63. 63.
    Zuany-Amorim, C., Sawicka, E., Manlius, C., Le Moine, A., Brunet, L. R., Kemeny, D. M., Bowen, G., Rook, G. and Walker, C., Suppression of airway eosinophilia by killed Mycobacterium vaccae-induced allergen-specific regulatory T-cells. Nat Med 2002. 8: 625–629.CrossRefPubMedGoogle Scholar
  64. 64.
    Ohno, N., Ide, T., Sakaguchi, M., Inouye, S. and Saito, S., Common antigenicity between Japanese cedar (Cryptomeria japonica) pollen and Japanese cypress (Chamaecyparis obtusa) pollen, II. Determination of the cross-reacting T-cell epitope of cry j 1 and cha o 1 in mice. Immunology 2000. 99: 630–634.CrossRefPubMedGoogle Scholar
  65. 65.
    Takagi, H., Hirose, S., Yasuda, H. and Takaiwa, F., Biochemical safety evaluation of trans-genic rice seeds expressing T cell epitopes of Japanese cedar pollen allergens. J Agric Food Chem 2006. 54: 9901–9905.CrossRefPubMedGoogle Scholar
  66. 66.
    Yuki, Y., Byun, Y., Fujita, M., Izutani, W., Suzuki, T., Udaka, S., Fujihashi, K., McGhee, J. R. and Kiyono, H., Production of a recombinant hybrid molecule of cholera toxin-B-subunit and proteolipid-protein-peptide for the treatment of experimental encephalomyelitis. Biotechnol Bioeng 2001. 74: 62–69.CrossRefPubMedGoogle Scholar
  67. 67.
    Yuki, Y., Hara-Yakoyama, C., Guadiz, A. A., Udaka, S., Kiyono, H. and Chatterjee, S., Production of a recombinant cholera toxin B subunit-insulin B chain peptide hybrid protein by Brevibacillus choshinensis expression system as a nasal vaccine against autoimmune diabetes. Biotechnol Bioeng 2005. 92: 803–809.CrossRefPubMedGoogle Scholar
  68. 68.
    online, F. F. a. D. A., Guidance for Industry: Drug. Biologics, and Medical Deivices Derived from Bioengineered Plants for Use in Humans and Animals. 2001.
  69. 69.
    online, E. M. A. E., Guideline on the quality of biological active substances produced by stable transgene expression in higher plants. 2006.
  70. 70.
    Twyman, R. M., Stoger, E., Schillberg, S., Christou, P. and Fischer, R., Molecular farming in plants: host systems and expression technology. Trends Biotechnol 2003. 21: 570–578.CrossRefPubMedGoogle Scholar
  71. 71.
    Stoger, E., Sack, M., Fischer, R. and Christou, P., Plantibodies: applications, advantages and bottlenecks. Curr Opin Biotechnol 2002. 13: 161–166.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Yoshikazu Yuki
    • 1
    • 2
    • 3
  • Fumio Takaiwa
    • 4
  • Hiroshi Kiyono
    • 1
    • 2
  1. 1.Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical ScienceThe University of TokyoTokyoJapan
  2. 2.Core Research for Evolutional Science and Technology (CREST)Japan Science and Technology Corporation (JST)SaitamaJapan
  3. 3.Creation and Support Program for Start-ups from UniversitiesJapan Science and Technology Corporation (JST)SaitamaJapan
  4. 4.Transgenic Crop Research and Development CenterNational Institute of Agrobiological SciencesIbarakiJapan

Personalised recommendations