Exosomes: Naturally Occurring Minimal Antigen-Presenting Units

Part of the Allergy Frontiers book series (ALLERGY, volume 6)


Exosomes are secreted spherical structures that are limited by a lipid bilayer and contain cytosolic components from the producing cell. Exosomes form in intracellular multivesicular compartments of the endocytic pathway, and are secreted upon fusion of these compartments with the plasma membrane. Secretion of exosomes had been described initially in reticulocytes differentiating into red blood cells, and proposed to allow elimination of useless proteins. But exosomes became the object of increasing interest from immunologists in the late 90s, when antigen presenting cells where shown to secrete exosomes bearing functional Major Histocompatibility Complex molecules, able to induce activation of cognate T cells. Since then, a large amount of work has strengthen the idea that exosomes secreted by antigen presenting cells could represent « minimal antigen presenting units ». In this review, we describe the biophysical and biochemical specificities of exosomes, give an overview of their antigen presenting functions, and discuss their use for immunotherapies.


Major Histocompatibility Complex Class Peptide Complex Late Endocytic Compartment Functional Major Histocompatibility Complex Class Good Manufacturing Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420.PubMedGoogle Scholar
  2. 2.
    Segura E, Nicco C, Lombard B, Veron P, Raposo G, Batteux F, Amigorena S, Thery C (2005) ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 106:216–223.CrossRefPubMedGoogle Scholar
  3. 3.
    Potolicchio I, Carven GJ, Xu X, Stipp C, Riese RJ, Stern LJ, Santambrogio L (2005) Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J Immunol 175:2237–2243.PubMedGoogle Scholar
  4. 4.
    Faure J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V et al. (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31:642–648.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang HG, Liu C, Su K, Yu S, Zhang L, Zhang S, Wang J, Cao X, Grizzle W, Kimberly RP (2006) A membrane form of TNF-alpha presented by exosomes delays T cell activation-induced cell death. J Immunol 176:7385–7393.PubMedGoogle Scholar
  6. 6.
    Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17:879–887.CrossRefPubMedGoogle Scholar
  7. 7.
    Admyre C, Grunewald J, Thyberg J, Gripenback S, Tornling G, Eklund A, Scheynius A, Gabrielsson S (2003) Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J 22:578–583.CrossRefPubMedGoogle Scholar
  8. 8.
    Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101:13368–13373.CrossRefPubMedGoogle Scholar
  9. 9.
    Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T et al. (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360:295–305.CrossRefPubMedGoogle Scholar
  10. 10.
    Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LA, van Meerbeeck JP, Burgers SA, Hoogsteden HC, Lambrecht BN (2004) Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol 31:114–121.CrossRefPubMedGoogle Scholar
  11. 11.
    Gatti JL, Metayer S, Belghazi M, Dacheux F, Dacheux JL (2005) Identification, proteomic profiling, and origin of ram epididymal fluid exosome-like vesicles. Biol Reprod 72:1452–1465.CrossRefPubMedGoogle Scholar
  12. 12.
    Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172.CrossRefPubMedGoogle Scholar
  13. 13.
    Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1998) Eradication of established murine tumours using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594–600.CrossRefPubMedGoogle Scholar
  14. 14.
    Thery C, Clayton A, Amigorena S, Raposo G (2006) Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. In: Curr Protoc Cell Biol. Edited by Wiley J, and s, vol. 1 Part 3, 3.22.01-29.Google Scholar
  15. 15.
    Lamparski HG, Metha-Damani A, Yao JY, Patel S, Hsu DH, Ruegg C, Le Pecq JB (2002) Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 270:211–226.PubMedGoogle Scholar
  16. 16.
    Clayton A, Court J, Navabi H, Adams M, Mason MD, Hobot JA, Newman GR, Jasani B (2001) Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods 247:163–174.CrossRefPubMedGoogle Scholar
  17. 17.
    Thery C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1999) Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 147:599–610.Google Scholar
  18. 18.
    Hawari FI, Rouhani FN, Cui X, Yu ZX, Buckley C, Kaler M, Levine SJ (2004) Release of full-length 55-kDa TNF receptor 1 in exosome-like vesicles: a mechanism for generation of soluble cytokine receptors. Proc Natl Acad Sci U S A 101:1297–1302.CrossRefPubMedGoogle Scholar
  19. 19.
    Karlsson M, Lundin S, Dahlgren U, Kahu H, Pettersson I, Telemo E (2001) “Tolerosomes” are produced by intestinal epithelial cells. Eur J Immunol 31:2892–2900.CrossRefPubMedGoogle Scholar
  20. 20.
    Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94:3791–3799.PubMedGoogle Scholar
  21. 21.
    Hess C, Sadallah S, Hefti A, Landmann R, Schifferli JA (1999) Ectosomes released by human neutrophils are specialized functional units. J Immunol 163:4564–4573.PubMedGoogle Scholar
  22. 22.
    Monleon I, Martinez-Lorenzo MJ, Monteagudo L, Lasierra P, Taules M, Iturralde M, Pineiro A, Larrad L, Alava MA, Naval J et al. (2001) Differential secretion of Fas ligand- or APO2 ligand/ TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. J Immunol 167:6736–6744.PubMedGoogle Scholar
  23. 23.
    Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P, Squarcina P, Accornero P, Lozupone F, Lugini L et al. (2002) Induction of lymphocyte apoptosis by tumour cell secretion of FasL-bearing microvesicles. J Exp Med 195:1303–1316.CrossRefPubMedGoogle Scholar
  24. 24.
    Huber V, Fais S, Iero M, Lugini L, Canese P, Squarcina P, Zaccheddu A, Colone M, Arancia G, Gentile M et al. (2005) Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology 128:1796–1804.CrossRefPubMedGoogle Scholar
  25. 25.
    Booth AM, Fang Y, Fallon JK, Yang JM, Hildreth JE, Gould SJ (2006) Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol 172:923–935.CrossRefPubMedGoogle Scholar
  26. 26.
    Laulagnier K, Motta C, Hamdi S, Roy S, Fauvelle F, Pageaux JF, Kobayashi T, Salles JP, Perret B, Bonnerot C et al. (2004) Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J 380:161–171.CrossRefPubMedGoogle Scholar
  27. 27.
    Wubbolts R, Leckie RS, Veenhuizen PT, Schwarzmann G, Mobius W, Hoernschemeyer J, Slot JW, Geuze HJ, Stoorvogel W (2003) Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem 278:10963–10972.Google Scholar
  28. 28.
    Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Papworth GD, Zahorchak AF, Logar AJ, Wang Z, Watkins SC et al. (2004) Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104:3257–3266.CrossRefPubMedGoogle Scholar
  29. 29.
    Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, Amigorena S (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166:7309–7318.PubMedGoogle Scholar
  30. 30.
    Mobius W, van Donselaar E, Ohno-Iwashita Y, Shimada Y, Heijnen HF, Slot JW, Geuze HJ (2003) Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway. Traffic 4:222–231.CrossRefPubMedGoogle Scholar
  31. 31.
    de Gassart A, Geminard C, Fevrier B, Raposo G, Vidal M (2003) Lipid raft-associated protein sorting in exosomes. Blood 102:4336–4344.CrossRefPubMedGoogle Scholar
  32. 32.
    Clayton A, Harris CL, Court J, Mason MD, Morgan BP (2003) Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59. Eur J Immunol 33:522–531.CrossRefPubMedGoogle Scholar
  33. 33.
    Van Niel G, Mallegol J, Bevilacqua C, Candalh C, Brugiere S, Tomaskovic-Crook E, Heath JK, Cerf-Bensussan N, Heyman M (2003) Intestinal epithelial exosomes carry MHC class II/ peptides able to inform the immune system in mice. Gut 52:1690–1697.CrossRefPubMedGoogle Scholar
  34. 34.
    Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z (2005) Induction of heat shock proteins in B-cell exosomes. J Cell Sci 118:3631–3638.CrossRefPubMedGoogle Scholar
  35. 35.
    Vincent-Schneider H, Stumptner-Cuvelette P, Lankar D, Pain S, Raposo G, Benaroch P, Bonnerot C (2002) Exosomes bearing HLA-DR1 molecules need dendritic cells to efficiently stimulate specific T cells. Int Immunol 14:713–722.CrossRefPubMedGoogle Scholar
  36. 36.
    Thery C, Duban L, Segura E, Veron P, Lantz O, Amigorena S (2002) Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 3:1156–1162.CrossRefPubMedGoogle Scholar
  37. 37.
    Skokos D, Botros HG, Demeure C, Morin J, Peronet R, Birkenmeier G, Boudaly S, Mecheri S (2003) Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol 170:3037–3045.PubMedGoogle Scholar
  38. 38.
    Mallegol J, Van Niel G, Lebreton C, Lepelletier Y, Candalh C, Dugave C, Heath JK, Raposo G, Cerf-Bensussan N, Heyman M (2007) T84-Intestinal Epithelial Exosomes Bear MHC Class II/Peptide Complexes Potentiating Antigen Presentation by Dendritic Cells. Gastroenterology 132:1866–1876.CrossRefPubMedGoogle Scholar
  39. 39.
    Hsu DH, Paz P, Villaflor G, Rivas A, Mehta-Damani A, Angevin E, Zitvogel L, Le Pecq JB (2003) Exosomes as a tumour vaccine: enhancing potency through direct loading of antigenic peptides. J Immunother 26:440–450.CrossRefPubMedGoogle Scholar
  40. 40.
    Andre F, Chaput N, Schartz NE, Flament C, Aubert N, Bernard J, Lemonnier F, Raposo G, Escudier B, Hsu DH et al. (2004) Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J Immunol 172:2126–2136.PubMedGoogle Scholar
  41. 41.
    Chaput N, Schartz NE, Andre F, Taieb J, Novault S, Bonnaventure P, Aubert N, Bernard J, Lemonnier F, Merad M et al. (2004) Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumour rejection. J Immunol 172:2137–2146.PubMedGoogle Scholar
  42. 42.
    Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T et al. (2001) Tumour-derived exosomes are a source of shared tumour rejection antigens for CTL cross-priming. Nat Med 7:297–303.CrossRefPubMedGoogle Scholar
  43. 43.
    Hwang I, Shen X, Sprent J (2003) Direct stimulation of naive T cells by membrane vesicles from antigen-presenting cells: distinct roles for CD54 and B7 molecules. Proc Natl Acad Sci U S A 100:6670–6675.CrossRefPubMedGoogle Scholar
  44. 44.
    Admyre C, Johansson SM, Paulie S, Gabrielsson S (2006) Direct exosome stimulation of peripheral humanT cells detected by ELISPOT. Eur J Immunol.Google Scholar
  45. 45.
    Derdak SV, Kueng HJ, Leb VM, Neunkirchner A, Schmetterer KG, Bielek E, Majdic O, Knapp W, Seed B, Pickl WF (2006) Direct stimulation of T lymphocytes by immunosomes: virus-like particles decorated with T cell receptor/CD3 ligands plus costimulatory molecules. Proc Natl Acad Sci U S A 103:13144–13149.CrossRefPubMedGoogle Scholar
  46. 46.
    Kovar M, Boyman O, Shen X, Hwang I, Kohler R, Sprent J (2006) Direct stimulation of T cells by membrane vesicles from antigen-presenting cells. Proc Natl Acad Sci U S A 103:11671–11676.CrossRefPubMedGoogle Scholar
  47. 47.
    Aline F, Bout D, Amigorena S, Roingeard P, Dimier-Poisson I (2004) Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection. Infect Immun 72:4127–4137.CrossRefPubMedGoogle Scholar
  48. 48.
    Colino J, Snapper CM (2006) Exosomes from bone marrow dendritic cells pulsed with diphtheria toxoid preferentially induce type 1 antigen-specific IgG responses in naive recipients in the absence of free antigen. J Immunol 177:3757–3762.PubMedGoogle Scholar
  49. 49.
    Peche H, Heslan M, Usal C, Amigorena S, Cuturi MC (2003) Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell-derived exosomes modulates allograft rejection. Transplantation 76:1503–1510.CrossRefPubMedGoogle Scholar
  50. 50.
    Peche H, Renaudin K, Beriou G, Merieau E, Amigorena S, Cuturi MC (2006) Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. Am J Transplant 6:1541–1550.CrossRefPubMedGoogle Scholar
  51. 51.
    Kim SH, Lechman ER, Bianco N, Menon R, Keravala A, Nash J, Mi Z, Watkins SC, Gambotto A, Robbins PD (2005) Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J Immunol 174:6440–6448.PubMedGoogle Scholar
  52. 52.
    Kim SH, Bianco N, Menon R, Lechman ER, Shufesky WJ, Morelli AE, Robbins PD (2006) Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Mol Ther 13:289–300.CrossRefPubMedGoogle Scholar
  53. 53.
    Escudier B, Dorval T, Chaput N, Andre F, Caby MP, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S et al. (2005) Vaccination of metastatic melanoma patients with autolo-gous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med 3:10.CrossRefPubMedGoogle Scholar
  54. 54.
    Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A et al. (2005) A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 3:9.CrossRefPubMedGoogle Scholar
  55. 55.
    Taieb J, Chaput N, Schartz N, Roux S, Novault S, Menard C, Ghiringhelli F, Terme M, Carpentier AF, Darrasse-Jese G et al. (2006) Chemoimmunotherapy of tumours: cyclophos-phamide synergizes with exosome based vaccines. J Immunol 176:2722–2729.PubMedGoogle Scholar
  56. 56.
    Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, Corbelli A, Fais S, Parmiani G, Rivoltini L (2006) Human tumour-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 66:9290–9298.CrossRefPubMedGoogle Scholar
  57. 57.
    Liu C, Yu S, Zinn K, Wang J, Zhang L, Jia Y, Kappes JC, Barnes S, Kimberly RP, Grizzle WE et al. (2006) Murine mammary carcinoma exosomes promote tumour growth by suppression of NK cell function. J Immunol 176:1375–1385.PubMedGoogle Scholar
  58. 58.
    Clayton A, Tabi Z (2005) Exosomes and the MICA-NKG2D system in cancer. Blood Cells Mol Dis 34:206–213.CrossRefPubMedGoogle Scholar
  59. 59.
    Zeelenberg IS, Ostrowski M, Krumeich S, Bobrie A, Jancic C, Boissonnas A, Delcayre A, Le Pecq JB, Combadière B, Amigorena S, Théry C (2008) Targeting tumour antigens to secreted membrane vesicles in vivo induces efficient anti-tumour immune responses. Cancer Res 68:1228–1235.CrossRefPubMedGoogle Scholar
  60. 60.
    Prado N, Marazuela EG, Segura E, Fernandez-Garcia H, Villalba M, Thery C, Rodriguez R, Batanero E (2008) Exosomes from bronchoalveolar fluid of tolerized mice prevent allergic reaction. J Immunol 181(2):1519–1525.PubMedGoogle Scholar
  61. 61.
    Théry C, Ostrowski M, and Segura E, (2009) Membrane vesicles as conveyors of immune responses. Nature Rev Immunol 9:581–593.CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.Institut Curie, Centre de RechercheParis Cedex 05France
  2. 2.INSERM U932Paris Cedex 05France

Personalised recommendations