Skip to main content

Exosomes: Naturally Occurring Minimal Antigen-Presenting Units

  • Chapter

Part of the book series: Allergy Frontiers ((ALLERGY,volume 6))

Abstract

Exosomes are secreted spherical structures that are limited by a lipid bilayer and contain cytosolic components from the producing cell. Exosomes form in intracellular multivesicular compartments of the endocytic pathway, and are secreted upon fusion of these compartments with the plasma membrane. Secretion of exosomes had been described initially in reticulocytes differentiating into red blood cells, and proposed to allow elimination of useless proteins. But exosomes became the object of increasing interest from immunologists in the late 90s, when antigen presenting cells where shown to secrete exosomes bearing functional Major Histocompatibility Complex molecules, able to induce activation of cognate T cells. Since then, a large amount of work has strengthen the idea that exosomes secreted by antigen presenting cells could represent « minimal antigen presenting units ». In this review, we describe the biophysical and biochemical specificities of exosomes, give an overview of their antigen presenting functions, and discuss their use for immunotherapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420.

    PubMed  CAS  Google Scholar 

  2. Segura E, Nicco C, Lombard B, Veron P, Raposo G, Batteux F, Amigorena S, Thery C (2005) ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 106:216–223.

    Article  PubMed  CAS  Google Scholar 

  3. Potolicchio I, Carven GJ, Xu X, Stipp C, Riese RJ, Stern LJ, Santambrogio L (2005) Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J Immunol 175:2237–2243.

    PubMed  CAS  Google Scholar 

  4. Faure J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V et al. (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31:642–648.

    Article  PubMed  CAS  Google Scholar 

  5. Zhang HG, Liu C, Su K, Yu S, Zhang L, Zhang S, Wang J, Cao X, Grizzle W, Kimberly RP (2006) A membrane form of TNF-alpha presented by exosomes delays T cell activation-induced cell death. J Immunol 176:7385–7393.

    PubMed  CAS  Google Scholar 

  6. Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17:879–887.

    Article  PubMed  CAS  Google Scholar 

  7. Admyre C, Grunewald J, Thyberg J, Gripenback S, Tornling G, Eklund A, Scheynius A, Gabrielsson S (2003) Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J 22:578–583.

    Article  PubMed  CAS  Google Scholar 

  8. Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101:13368–13373.

    Article  PubMed  CAS  Google Scholar 

  9. Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T et al. (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360:295–305.

    Article  PubMed  CAS  Google Scholar 

  10. Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LA, van Meerbeeck JP, Burgers SA, Hoogsteden HC, Lambrecht BN (2004) Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol 31:114–121.

    Article  PubMed  CAS  Google Scholar 

  11. Gatti JL, Metayer S, Belghazi M, Dacheux F, Dacheux JL (2005) Identification, proteomic profiling, and origin of ram epididymal fluid exosome-like vesicles. Biol Reprod 72:1452–1465.

    Article  PubMed  CAS  Google Scholar 

  12. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172.

    Article  PubMed  CAS  Google Scholar 

  13. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1998) Eradication of established murine tumours using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594–600.

    Article  PubMed  CAS  Google Scholar 

  14. Thery C, Clayton A, Amigorena S, Raposo G (2006) Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. In: Curr Protoc Cell Biol. Edited by Wiley J, and s, vol. 1 Part 3, 3.22.01-29.

    Google Scholar 

  15. Lamparski HG, Metha-Damani A, Yao JY, Patel S, Hsu DH, Ruegg C, Le Pecq JB (2002) Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 270:211–226.

    PubMed  CAS  Google Scholar 

  16. Clayton A, Court J, Navabi H, Adams M, Mason MD, Hobot JA, Newman GR, Jasani B (2001) Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods 247:163–174.

    Article  PubMed  CAS  Google Scholar 

  17. Thery C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1999) Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 147:599–610.

    CAS  Google Scholar 

  18. Hawari FI, Rouhani FN, Cui X, Yu ZX, Buckley C, Kaler M, Levine SJ (2004) Release of full-length 55-kDa TNF receptor 1 in exosome-like vesicles: a mechanism for generation of soluble cytokine receptors. Proc Natl Acad Sci U S A 101:1297–1302.

    Article  PubMed  CAS  Google Scholar 

  19. Karlsson M, Lundin S, Dahlgren U, Kahu H, Pettersson I, Telemo E (2001) “Tolerosomes” are produced by intestinal epithelial cells. Eur J Immunol 31:2892–2900.

    Article  PubMed  CAS  Google Scholar 

  20. Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94:3791–3799.

    PubMed  CAS  Google Scholar 

  21. Hess C, Sadallah S, Hefti A, Landmann R, Schifferli JA (1999) Ectosomes released by human neutrophils are specialized functional units. J Immunol 163:4564–4573.

    PubMed  CAS  Google Scholar 

  22. Monleon I, Martinez-Lorenzo MJ, Monteagudo L, Lasierra P, Taules M, Iturralde M, Pineiro A, Larrad L, Alava MA, Naval J et al. (2001) Differential secretion of Fas ligand- or APO2 ligand/ TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. J Immunol 167:6736–6744.

    PubMed  CAS  Google Scholar 

  23. Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P, Squarcina P, Accornero P, Lozupone F, Lugini L et al. (2002) Induction of lymphocyte apoptosis by tumour cell secretion of FasL-bearing microvesicles. J Exp Med 195:1303–1316.

    Article  PubMed  CAS  Google Scholar 

  24. Huber V, Fais S, Iero M, Lugini L, Canese P, Squarcina P, Zaccheddu A, Colone M, Arancia G, Gentile M et al. (2005) Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology 128:1796–1804.

    Article  PubMed  CAS  Google Scholar 

  25. Booth AM, Fang Y, Fallon JK, Yang JM, Hildreth JE, Gould SJ (2006) Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol 172:923–935.

    Article  PubMed  CAS  Google Scholar 

  26. Laulagnier K, Motta C, Hamdi S, Roy S, Fauvelle F, Pageaux JF, Kobayashi T, Salles JP, Perret B, Bonnerot C et al. (2004) Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J 380:161–171.

    Article  PubMed  CAS  Google Scholar 

  27. Wubbolts R, Leckie RS, Veenhuizen PT, Schwarzmann G, Mobius W, Hoernschemeyer J, Slot JW, Geuze HJ, Stoorvogel W (2003) Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem 278:10963–10972.

    CAS  Google Scholar 

  28. Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Papworth GD, Zahorchak AF, Logar AJ, Wang Z, Watkins SC et al. (2004) Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104:3257–3266.

    Article  PubMed  CAS  Google Scholar 

  29. Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, Amigorena S (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166:7309–7318.

    PubMed  CAS  Google Scholar 

  30. Mobius W, van Donselaar E, Ohno-Iwashita Y, Shimada Y, Heijnen HF, Slot JW, Geuze HJ (2003) Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway. Traffic 4:222–231.

    Article  PubMed  CAS  Google Scholar 

  31. de Gassart A, Geminard C, Fevrier B, Raposo G, Vidal M (2003) Lipid raft-associated protein sorting in exosomes. Blood 102:4336–4344.

    Article  PubMed  CAS  Google Scholar 

  32. Clayton A, Harris CL, Court J, Mason MD, Morgan BP (2003) Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59. Eur J Immunol 33:522–531.

    Article  PubMed  CAS  Google Scholar 

  33. Van Niel G, Mallegol J, Bevilacqua C, Candalh C, Brugiere S, Tomaskovic-Crook E, Heath JK, Cerf-Bensussan N, Heyman M (2003) Intestinal epithelial exosomes carry MHC class II/ peptides able to inform the immune system in mice. Gut 52:1690–1697.

    Article  PubMed  Google Scholar 

  34. Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z (2005) Induction of heat shock proteins in B-cell exosomes. J Cell Sci 118:3631–3638.

    Article  PubMed  CAS  Google Scholar 

  35. Vincent-Schneider H, Stumptner-Cuvelette P, Lankar D, Pain S, Raposo G, Benaroch P, Bonnerot C (2002) Exosomes bearing HLA-DR1 molecules need dendritic cells to efficiently stimulate specific T cells. Int Immunol 14:713–722.

    Article  PubMed  CAS  Google Scholar 

  36. Thery C, Duban L, Segura E, Veron P, Lantz O, Amigorena S (2002) Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 3:1156–1162.

    Article  PubMed  CAS  Google Scholar 

  37. Skokos D, Botros HG, Demeure C, Morin J, Peronet R, Birkenmeier G, Boudaly S, Mecheri S (2003) Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol 170:3037–3045.

    PubMed  CAS  Google Scholar 

  38. Mallegol J, Van Niel G, Lebreton C, Lepelletier Y, Candalh C, Dugave C, Heath JK, Raposo G, Cerf-Bensussan N, Heyman M (2007) T84-Intestinal Epithelial Exosomes Bear MHC Class II/Peptide Complexes Potentiating Antigen Presentation by Dendritic Cells. Gastroenterology 132:1866–1876.

    Article  PubMed  CAS  Google Scholar 

  39. Hsu DH, Paz P, Villaflor G, Rivas A, Mehta-Damani A, Angevin E, Zitvogel L, Le Pecq JB (2003) Exosomes as a tumour vaccine: enhancing potency through direct loading of antigenic peptides. J Immunother 26:440–450.

    Article  PubMed  CAS  Google Scholar 

  40. Andre F, Chaput N, Schartz NE, Flament C, Aubert N, Bernard J, Lemonnier F, Raposo G, Escudier B, Hsu DH et al. (2004) Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J Immunol 172:2126–2136.

    PubMed  CAS  Google Scholar 

  41. Chaput N, Schartz NE, Andre F, Taieb J, Novault S, Bonnaventure P, Aubert N, Bernard J, Lemonnier F, Merad M et al. (2004) Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumour rejection. J Immunol 172:2137–2146.

    PubMed  CAS  Google Scholar 

  42. Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T et al. (2001) Tumour-derived exosomes are a source of shared tumour rejection antigens for CTL cross-priming. Nat Med 7:297–303.

    Article  PubMed  CAS  Google Scholar 

  43. Hwang I, Shen X, Sprent J (2003) Direct stimulation of naive T cells by membrane vesicles from antigen-presenting cells: distinct roles for CD54 and B7 molecules. Proc Natl Acad Sci U S A 100:6670–6675.

    Article  PubMed  CAS  Google Scholar 

  44. Admyre C, Johansson SM, Paulie S, Gabrielsson S (2006) Direct exosome stimulation of peripheral humanT cells detected by ELISPOT. Eur J Immunol.

    Google Scholar 

  45. Derdak SV, Kueng HJ, Leb VM, Neunkirchner A, Schmetterer KG, Bielek E, Majdic O, Knapp W, Seed B, Pickl WF (2006) Direct stimulation of T lymphocytes by immunosomes: virus-like particles decorated with T cell receptor/CD3 ligands plus costimulatory molecules. Proc Natl Acad Sci U S A 103:13144–13149.

    Article  PubMed  CAS  Google Scholar 

  46. Kovar M, Boyman O, Shen X, Hwang I, Kohler R, Sprent J (2006) Direct stimulation of T cells by membrane vesicles from antigen-presenting cells. Proc Natl Acad Sci U S A 103:11671–11676.

    Article  PubMed  CAS  Google Scholar 

  47. Aline F, Bout D, Amigorena S, Roingeard P, Dimier-Poisson I (2004) Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection. Infect Immun 72:4127–4137.

    Article  PubMed  CAS  Google Scholar 

  48. Colino J, Snapper CM (2006) Exosomes from bone marrow dendritic cells pulsed with diphtheria toxoid preferentially induce type 1 antigen-specific IgG responses in naive recipients in the absence of free antigen. J Immunol 177:3757–3762.

    PubMed  CAS  Google Scholar 

  49. Peche H, Heslan M, Usal C, Amigorena S, Cuturi MC (2003) Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell-derived exosomes modulates allograft rejection. Transplantation 76:1503–1510.

    Article  PubMed  CAS  Google Scholar 

  50. Peche H, Renaudin K, Beriou G, Merieau E, Amigorena S, Cuturi MC (2006) Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. Am J Transplant 6:1541–1550.

    Article  PubMed  CAS  Google Scholar 

  51. Kim SH, Lechman ER, Bianco N, Menon R, Keravala A, Nash J, Mi Z, Watkins SC, Gambotto A, Robbins PD (2005) Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J Immunol 174:6440–6448.

    PubMed  CAS  Google Scholar 

  52. Kim SH, Bianco N, Menon R, Lechman ER, Shufesky WJ, Morelli AE, Robbins PD (2006) Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Mol Ther 13:289–300.

    Article  PubMed  CAS  Google Scholar 

  53. Escudier B, Dorval T, Chaput N, Andre F, Caby MP, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S et al. (2005) Vaccination of metastatic melanoma patients with autolo-gous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med 3:10.

    Article  PubMed  CAS  Google Scholar 

  54. Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A et al. (2005) A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 3:9.

    Article  PubMed  CAS  Google Scholar 

  55. Taieb J, Chaput N, Schartz N, Roux S, Novault S, Menard C, Ghiringhelli F, Terme M, Carpentier AF, Darrasse-Jese G et al. (2006) Chemoimmunotherapy of tumours: cyclophos-phamide synergizes with exosome based vaccines. J Immunol 176:2722–2729.

    PubMed  CAS  Google Scholar 

  56. Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, Corbelli A, Fais S, Parmiani G, Rivoltini L (2006) Human tumour-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 66:9290–9298.

    Article  PubMed  CAS  Google Scholar 

  57. Liu C, Yu S, Zinn K, Wang J, Zhang L, Jia Y, Kappes JC, Barnes S, Kimberly RP, Grizzle WE et al. (2006) Murine mammary carcinoma exosomes promote tumour growth by suppression of NK cell function. J Immunol 176:1375–1385.

    PubMed  CAS  Google Scholar 

  58. Clayton A, Tabi Z (2005) Exosomes and the MICA-NKG2D system in cancer. Blood Cells Mol Dis 34:206–213.

    Article  PubMed  CAS  Google Scholar 

  59. Zeelenberg IS, Ostrowski M, Krumeich S, Bobrie A, Jancic C, Boissonnas A, Delcayre A, Le Pecq JB, Combadière B, Amigorena S, Théry C (2008) Targeting tumour antigens to secreted membrane vesicles in vivo induces efficient anti-tumour immune responses. Cancer Res 68:1228–1235.

    Article  PubMed  CAS  Google Scholar 

  60. Prado N, Marazuela EG, Segura E, Fernandez-Garcia H, Villalba M, Thery C, Rodriguez R, Batanero E (2008) Exosomes from bronchoalveolar fluid of tolerized mice prevent allergic reaction. J Immunol 181(2):1519–1525.

    PubMed  CAS  Google Scholar 

  61. Théry C, Ostrowski M, and Segura E, (2009) Membrane vesicles as conveyors of immune responses. Nature Rev Immunol 9:581–593.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clotilde Théry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Segura, E., Théry, C. (2010). Exosomes: Naturally Occurring Minimal Antigen-Presenting Units. In: Pawankar, R., Holgate, S.T., Rosenwasser, L.J. (eds) Allergy Frontiers: Future Perspectives. Allergy Frontiers, vol 6. Springer, Tokyo. https://doi.org/10.1007/978-4-431-99365-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-99365-0_20

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-99364-3

  • Online ISBN: 978-4-431-99365-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics