An Environmental Systems Biology Approach to the Study of Asthma

  • William A. Toscano
  • Kristen P. Oehlke
  • Ramzi Kafoury
Part of the Allergy Frontiers book series (ALLERGY, volume 6)


Recent advances in biology in the post genomic era have yielded an appreciation of systems approaches to understand mechanisms of human diseases that reductionist science has failed to elucidate. Systems biology is a new way to look at the multiple interacting factors in the onset and progression of environmentally caused human disease. Asthma is an important environmental disease. It is estimated that on a global basis approximately 300,000 million people have asthma. Asthma is the most prevalent childhood disease, and the leading cause of childhood hospitalizations. When humans are exposed to triggers of asthma, a network of cytokines, and interconnected biochemical pathways in the cell is activated. Those pathways interact as a system to trigger sympthomatic presentation of the disease. Interactions of the cytokines and biochemical pathways involved in inflammatory processes are discussed. Application of the methods of systems biology to environmental diseases to yield new information on the mechanism of disease and inform new strategies for public health intervention and prevention approaches are discussed.


Epidermal Growth Factor Receptor Respiratory Syncytial Virus System Biology Alveolar Macrophage Airway Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gold, D. R., and Wright, R. Population Disparities in Asthma. Annu. Rev. Public Health, 26: 89–113, 2005.CrossRefPubMedGoogle Scholar
  2. 2.
    Maddox, L., and Schwartz, D. A. The Pathophysiology of Asthma. Annu. Rev. Med., 53: 477–498, 2002.CrossRefPubMedGoogle Scholar
  3. 3.
    Bosse, Y., and Hudson, T. J. Toward a Comprehensive Set of Asthma Susceptibility Genes. Annu. Rev. Med., 58: 171–184, 2007.CrossRefPubMedGoogle Scholar
  4. 4.
    Guerra, S., and Martinez, F. D. Asthma Genetics: From Linear to Multifactorial Approaches. Annu. Rev. Med., 59: 327–348, 2007.CrossRefGoogle Scholar
  5. 5.
    Al-Rubeai, M., and Fussinger, M. Systems Biology. Cell Engineering. Amsterdam, Netherlands: Springer, 2007.Google Scholar
  6. 6.
    Kitano, H. Foundations of Systems Biology. Cambridge, MA: MIT Press, 2001.Google Scholar
  7. 7.
    Klipp, E., Herwig, R., Kowald, A., Wierling, C., and Lehrach, H. Systems Biology in Practice. Weinheim, Germany: Wiley-VCH, 2005.CrossRefGoogle Scholar
  8. 8.
    Kriete, A., and Eils, R. Computational Systems Biology. Burlington, MA: Elsevier-Academic Press, 2006Google Scholar
  9. 9.
    Palsson, B. Ø. Systems Biology: Properties of Reconstructed Networks. New York: Cambridge University Press, 2006.Google Scholar
  10. 10.
    ZSzallasi, Z., Stelling, J., and Periwal, V. System Modeling in Cellular Biology: From Concepts to Nuts and Bolts. Cambridge, MA: MIT Press, 2006.Google Scholar
  11. 11.
    Toscano, W. A., and Oehlke, K.-P. Systems Biology: New Approaches to Old Environmental Health Problems. Int. J. Environ. Res. Public Health, 2: 4–9, 2005.CrossRefPubMedGoogle Scholar
  12. 12.
    Burke, W., Fesinmeyer, M., Reed, K., Hampson, L., and Caristen, C. Family History as a Predictor of Asthma Risk. Am. J. Prev. Med., 24: 160–169, 2003.CrossRefPubMedGoogle Scholar
  13. 13.
    Kuiper, S., Muris, J. W., Dompeling, E., Kester, A. D., Wesseling, G., Knottnerus, J. A., and van Schayck, C. P. Interactive Effect of Family History and Environmental Factors on Respiratory Tract-related Morbidity in Infancy. J. Allergy Clin. Immunol., 120: 388–395, 2007.CrossRefPubMedGoogle Scholar
  14. 14.
    Koeppen-Schomerus, G., Stevenson, J., and Plomin, R. Genes and Environment in Asthma: A Study of 4 Year Old Twins. Arch. Dis. Child., 85: 398–400, 2001.CrossRefPubMedGoogle Scholar
  15. 15.
    Harris, J. R., Magnus, P., Samuelsen, S. O., and Tambs, K. No Evidence for Effects of Family Environment on Asthma. A Retrospective Study of Norwegian Twins. Am. J. Respir. Crit. Care Med., 156: 43–49, 1997.Google Scholar
  16. 16.
    van Beijsterveldt, C., and Boomsma, D. I. Genetics of Parentally Reported Asthma, Eczema and Rhinitis in 5-yr-Old Twins. Eur. Respir. J., 29: 516–521, 2007.CrossRefPubMedGoogle Scholar
  17. 17.
    Martinez, F. D. Gene-environment Interactions in Asthma and Allergies: A New Paradigm to Understand Disease Causation. Immunol. Allergy Clin. North Am., 25: 709–721, 2005.CrossRefPubMedGoogle Scholar
  18. 18.
    Smith, A. K., and Meyers, D. A. Family Studies and Positional Cloning of Genes for Asthma and Related Phenotypes. Immunol. Allergy Clin. North Am., 25: 641–654, 2005.CrossRefPubMedGoogle Scholar
  19. 19.
    Xu, J., Meyers, D. A., Ober, C., Blumenthal, M. N., Mellen, B., Barnes, K. C., King, R. A., Lester, L. A., Howard, T. D., Solway, J., Langefeld, C. D., Beaty, T. H., Rich, S. S., Bleecker, E. R., Cox, N. J., and Collaborative Study on the Genetics of Asthma. Genomewide Screen and Identification of Gene-gene Interactions for Asthma Susceptibility Loci in Three U. S. Populations: Collaborative Study on the Genetics of Asthma. Am. J. Hum. Genet., 68: 1437–1446, 2001.CrossRefPubMedGoogle Scholar
  20. 20.
    Xu, J., Fang, Z., Wang, B., Chen, C., Guang, W., Jin, Y., Yang, J., Lewitzky, S., Aelony, A., Parker, A., Meyer, J., Weiss, S. T., and Xu, X. A. Genomewide Search for Quantitative-trait Loci Underlying Asthma. Am. J. Hum. Genet., 69: 1271–1277, 2001.CrossRefPubMedGoogle Scholar
  21. 21.
    Alford, S. H., Zoratti, E., Peterson, E. L., Maliarik, M., Ownby, D. R., and Johnson, C. C. Parental History of Atopic Disease: Disease Pattern and Risk of Pediatric Atopy in Offspring. Allergy Clin. Immunol., 114: 1046–1050, 2004.CrossRefGoogle Scholar
  22. 22.
    Barnes, P. J., and Woolcock, A. J. Difficult Asthma. Eur. Respir. J., 12: 1209–1218, 1998.CrossRefPubMedGoogle Scholar
  23. 23.
    Temann, U. A., Laouar, Y., Eynon, E. E., Homer, R., and Flavell, R. A. IL9 Leads to Airway Inflammation by Inducing IL13 Expression in Airway Epithelial Cells. Int. Immunol., 19: 1–10, 2006.CrossRefPubMedGoogle Scholar
  24. 24.
    Renauld, J. C. New Insights into the Role of Cytokines in Asthma. J. Clin. Pathol., 54: 577–589, 2001.CrossRefPubMedGoogle Scholar
  25. 25.
    Strieter, R. M., Belperio, J. A., and Keane, M. P. Cytokines in Innate Host Defense in the Lung. J. Clin. Invest., 109: 699–705, 2002.PubMedGoogle Scholar
  26. 26.
    Marsh, D. G., Neely, J. D., Breazeale, D. R., Ghosh, B., Freidhoff, L. R., Ehrlich-Kautzky, E., Schou, C., Krishnaswamy, G., and Beaty, T. H. Linkage Analysis of IL4 and Other Chromosome 5q31.1 Markers and Total Serum Immunoglobulin E Concentrations. Science, 264: 1152–1156, 1994.CrossRefPubMedGoogle Scholar
  27. 27.
    Postma, D. S., Bleecker, E. R., Amelung, P. J., Holroyd, K. J., Xu, J., Panhuysen, C. L., Meyers, D. A., and Levitt, R. C. Genetic Susceptibility to Asthma-Bronchial Hyperresponsiveness Coinherited with a Major Gene for Atopy. N. Engl. J. Med., 333: 894–900, 1995.CrossRefPubMedGoogle Scholar
  28. 28.
    Rosenwasser, L. J., and Borish, L. Genetics of Atopy and Asthma: The Rationale Behind Promoter-based Candidate Gene Studies (IL-4 and IL-10) Am. J. Respir. Crit. Care Med., 156: S152–S155, 1997.PubMedGoogle Scholar
  29. 29.
    Janeway, C. A. J., and Medzhitov, R. Innate Immune Recognition. Annu. Rev. Immunol., 20: 197–216, 2002.CrossRefPubMedGoogle Scholar
  30. 30.
    Medzhitov, R., and Janeway, C. J. Innate Immunity. N. Engl. J. Med., 343: 338–344, 2000.CrossRefPubMedGoogle Scholar
  31. 31.
    Akira, S., Takeda, K., and Kaisho, T. Toll-like Receptors: Critical Proteins Linking Innate and Acquired Immunity. Nat. Immunol., 2: 675–680, 2001.CrossRefPubMedGoogle Scholar
  32. 32.
    Basu, S., and Fenton, M. J. Toll-like Receptors: Function and Roles in Lung Disease. Am. J. Physiol., 286: L887–L892, 2004.Google Scholar
  33. 33.
    Peiser, L., Mukhopadhyay, S., and Gordon, S. Scavenger Receptors in Innate Immunity. Curr. Opin. Immunol., 14: 123–128, 2002.CrossRefPubMedGoogle Scholar
  34. 34.
    Mukhopadhyay, S., Hoidal, J. R., and Mukherjee, T. K. Role of TNF α in Pulmonary Pathophysiology. Respir. Res., 7: 125–133, 2006.CrossRefPubMedGoogle Scholar
  35. 35.
    Sato, S., Sanjo, H., Takeda, K., Ninomiya-Tsuji, J., Yamamoto, M., Kawai, T., Matsumoto, K., Takeuchi, O., and Akira, S. Essential Function for the Kinase TAK1 in Innate and Adaptive Immune Responses. Nat. Immunol., 6: 1087–1095, 2005.CrossRefPubMedGoogle Scholar
  36. 36.
    Akira, S., and Takeda, K. Toll-Like Receptor Signaling. Nat. Rev. Immunol., 4: 499–511, 2004.CrossRefPubMedGoogle Scholar
  37. 37.
    Kawai, T., and Akira, S. Innate Immune Recognition of Viral Infection. Nat. Immunol., 7: 131–137, 2006.CrossRefPubMedGoogle Scholar
  38. 38.
    Alexopoulou, L., Holt, A. C., Medzhitov, R., and Flavell, R. A. Recognition of Double-stranded RNA and Activation of NF- κ B by Toll-Like Receptor 3. Nature, 413: 732–738, 2001.CrossRefPubMedGoogle Scholar
  39. 39.
    Krug, A., French, A. R., Barchet, W., Fischer, J. A., Dzionek, A., Pingel, J. T., Orihuela, M. M., Akira, S., Yokoyama, W. M., and Colonna, M. TLR9-dependent Recognition of MCMV by IPC and DC Generates Coordinated Cytokine Responses That Activate Antiviral NK Cell Function Immunity 21: 107–119, 2004.Google Scholar
  40. 40.
    Chen, Z. J. Ubiquitin Signaling in the NF-kappaB Pathway. Nat. Cell Biol., 7: 758–765, 2005.CrossRefPubMedGoogle Scholar
  41. 41.
    Adachi, M., Matsukura, S., Tokunaga, H., and Kokubu, F. Expression of Cytokines on Human Bronchial Epithelial Cells Induced by Influenza Virus A. Int. Arch. Allergy Immunol., 113: 307–311, 1997.CrossRefPubMedGoogle Scholar
  42. 42.
    Kurt-Jones, E. A., Popova, L., Kwinn, L., Haynes, L. M., Jones, L. P., Tripp, R. A., Walsh, E. E., Freeman, M. W., Golenbock, D. T., Anderson, L. J., and Finberg, R. W. Pattern Recognition Receptors TLR4 and CD14 Mediate Response to Respiratory Syncytial Virus. Nat. Immunol., 1: 398–401, 2000.CrossRefPubMedGoogle Scholar
  43. 43.
    Haeberle, H. A., Takizawa, R., Casola, A., Braiser, A. R., Dieterich, H. J., van Rooijen, N., Gatalica, Z., and Garofalo, R. P. Respiratory Syncytial Virus-Induced Activation of Nuclear Factor- κ B in the Lung Involves Alveolar Macrophages and Toll-Like Receptor 4-Dependent Pathways. J. Infect. Dis., 186: 1199–1206, 2002.CrossRefPubMedGoogle Scholar
  44. 44.
    Becker, S., Fenton, M. J., and Soukup, J. M. Involvement of Microbial Components and Toll¬like Receptors 2 and 4 in Cytokine Responses to Air Pollution Particles. Am. J. Respir. Cell Mol. Biol., 27: 611–618, 2002.PubMedGoogle Scholar
  45. 45.
    Min, J. W., Park, S. M., Rhim, T. Y., Park, S. W., Jang, A. S., Uh, S. T., Park, C. S., and Chung, I. Y. Effect and Mechanism of Lipopolysaccharide on Allergen-Induced Interleukin-5 and Eotaxins Production by Whole Blood Cultures of Atopic Asthmatics. Clin. Exp. Immunol., 147: 440–448, 2007.CrossRefPubMedGoogle Scholar
  46. 46.
    Supajatura, V., Ushio, H., Nakao, A., Akira, S., Okumura, K., Ra, C., and Ogawa, H. Differential Responses of Mast Cell Toll-Like Receptors 2 and 4 in Allergy and Innate Immunity. J. Clin. Invest., 109: 1351–1359, 2002.PubMedGoogle Scholar
  47. 47.
    Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K., and Akira, S. Toll-like Receptor 4 (TLR4)-deficient Mice are Hyperesponsive to Lipopolysaccharide: Evidence for TLR4 as the LPS Gene Product. J. Immunol., 162: 3749–3752, 1999.PubMedGoogle Scholar
  48. 48.
    Ozinsky, A., Underhill, D. M., Fontenot, J. D., Hajjar, A. M., Smith, K. D., Wilson, C. B., Schroeder, L., and Aderem, A. The Repertoire for Pattern Recognition of Pathogens by the Innate Immune System Is Defined by Cooperation Between Toll-Like Receptors. Proc. Natl. Acad. Sci. U.S.A., 97: 13766–13771, 2000.CrossRefPubMedGoogle Scholar
  49. 49.
    Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., Takeda, K., and Akira, S. Differential Roles of TLR2 and TLR4 in Recognition of Gram-Negative and Gram-Positive Bacterial Cell Wall Components. Immunity, 11: 443–451, 1999.CrossRefPubMedGoogle Scholar
  50. 50.
    Suzuki, N., Suzuki, S., Duncan, G. S., Millar, D. G., Wada, T., Mirtsos, C., Takada, H., Wakeham, A., Itie, A., Li, S., Penninger, J. M., Wesche, H., Ohashi, P. S., Mak, T. W., and Yeh, W. C. Severe Impairment of Interleukin-1 and Toll-Like Receptor Signaling in Mice Lacking IRAK 4. Nature, 416: 750–756, 2002.CrossRefPubMedGoogle Scholar
  51. 51.
    Baldwin, A. S. J. Series Introduction: The Transcription Factor NF- κ B and Human Disease. J. Clin. Invest., 107: 3–6, 2001.CrossRefPubMedGoogle Scholar
  52. 52.
    Christman, J. W., Sadikot, R. T., and Blackwell, T. S. The Role of Nuclear Factor- kb in Pulmonary Disease. Chest, 117: 1482–1487, 2000.CrossRefPubMedGoogle Scholar
  53. 53.
    Kafoury, R. M., Hernandez, J. M., Lasky, J. A., Toscano, W. A. J., and Friedman, M. Activation of Transcription Factor IL-6 (NF-IL-6) and Nuclear Factor-kappaB (NF-kappaB) by Lipid Ozonation Products Is Crucial to Interleukin-8 Gene Expression in Human Airway Epithelial Cells. Environ. Toxicol., 22: 159–168, 2007.CrossRefPubMedGoogle Scholar
  54. 54.
    Graziano, F. M., Cook, E. B., and Stahl, J. L. Cytokines, Chemokines, RANTES, and Eotaxin. Allergy Asthma Proc., 20: 141–146, 1999.CrossRefPubMedGoogle Scholar
  55. 55.
    Hoebe, K., Du, X., George, P., Janssen, E., Tabeta, K., Kim, S. O., Goode, J., Lin, P., Mann, N., Mudd, S., Crozat, K., Sovath, S., Han, J., and Beutler, B. Identification of Lps2 as a Key Transducer of MyD88-Independent TIR Signaling. Nature, 424: 743–748, 2003.CrossRefPubMedGoogle Scholar
  56. 56.
    Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K., and Akira, S. Role of Adapter TRIF in MyD88-Independent Toll-Like Receptor Signaling Pathway. Science 301: 640–643, 2003.CrossRefPubMedGoogle Scholar
  57. 57.
    Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T., and Seya, T. TICAM-1 and Adapter Molecule That Participates in Toll-Like Receptor 3-Mediated Interferon-Beta Induction. Nat. Immunol., 4: 161–167, 2003.CrossRefPubMedGoogle Scholar
  58. 58.
    Broide, D. H., Lotz, M., Cuomo, A. J., Coburn, D. A., Federman, E. C., and Wasserman, S. I. Cytokines in Symptomatic Asthma Airways. J. Allergy Clin. Immunol., 89: 958–967, 1992.CrossRefPubMedGoogle Scholar
  59. 59.
    Chaplin, D. D. Cell Cooperation in Development of Eosinophil-predominant Inflammation in Airways. Immunol. Res., 26: 55–62, 2002.CrossRefPubMedGoogle Scholar
  60. 60.
    Pfeffer, K. Biological Functions of Tumor Necrosis Factor Cytokines and Their Receptors. Cytokine Growth Factor Rev., 14: 185–191, 2003.CrossRefPubMedGoogle Scholar
  61. 61.
    Laichalk, L. L., Kunkel, S. L., Strieter, R. M., Danforth, J. M., Bailie, M. B., and Standiford, T. J. Tumor Necrosis Factor Mediates Lung Antibacterial Host Defense in Murine Klebsiella Pneumonia. Infect. Immun., 64: 5211–5218, 1996.PubMedGoogle Scholar
  62. 62.
    Vignola, A. M., Chanez, P., Bonsignore, G., Godard, P., and Bousquet, J. Structural Consequences of Airway Inflammation in Asthma. J. Allergy Clin. Immunol., 105: S514–S517, 2000.CrossRefPubMedGoogle Scholar
  63. 63.
    Ghaffar, O., Hamid, Q., Renzi, P. M., Allakhverdi, Z., Molet, S., Hogg, J. C., Shore, S. A., Luster, A. D., and Lamkhioued, B. Constitutive and Cytokine-Stimulated Expression of Eotaxin by Human Airway Smooth Muscle Cells. Am. J. Respir. Crit. Care Med., 159: 1933–1942, 1999.PubMedGoogle Scholar
  64. 64.
    Hahn, C., Islamian, A. P., Renz, H., and Nockher, W. A. Airway Epithelial Cells Produce Neurotrophins and Promote the Survival of Eosinophils During Allergic Airway Inflammation. J. Allergy Clin. Immunol., 117: 787–794, 2006.CrossRefPubMedGoogle Scholar
  65. 65.
    Wong, C. K., Wang, C. B., Li, M. L., Ip, W. K., Tian, Y. P., and Lam, C. W. Induction of Adhesion Molecules Upon the Interaction Between Eosinophils and Bronchial Epithelial Cells: Involvement of p38 MAPK and NF-kappaB. Int. Immunopharmacol., 6: 1859–1871, 2006.CrossRefPubMedGoogle Scholar
  66. 66.
    Amrani, Y., Ammit, A. J., and Panettieri, R. A. J. Tumor Necrosis Factor Receptor (TNFR) 1 but Not TNFR2 Mediates Tumor Necrosis Factor- α -Induced Interleukin-6 and RANTES in Human Smooth Muscle Cells: Role of p38 and p42/44 Mitogen-Activated Protein Kinases. Mol. Pharmacol., 60: 646–655, 2001.PubMedGoogle Scholar
  67. 67.
    Lora, J. M., Zhang, D. M., Liao, S. M., Burwell, T., King, A. M., Barker, P. A., Singh, L., Keaveney, M., Morgenstern, J., Gutierrez-Ramos, J. C., Coyle, A. J., and Frase, C. C. Tumor Necrosis Factor- α Triggers Mucus Production in Airway Epithelium Through I κB Kinase β -Dependent Mechanism. J. Biol. Chem., 280: 36510–36517, 2005.CrossRefPubMedGoogle Scholar
  68. 68.
    Escande, F., Aubert, J. P., Porchet, N., and Buisine, M. P. Human Mucin Gene MUC5AC: Organization of Its 5'-Region and Central Repetitive Region. Biochem. J., 358: 763–772, 2001.CrossRefPubMedGoogle Scholar
  69. 69.
    Tartaglia, L. A., Goeddel, D. V., Reynolds, C., Figari, I. S., Weber, R. F., Fendly, B. M., and Palladino, M. A. J. Stimulation of Human T-Cell Proliferation by Specific Activation of the 75-kDa Tumor Necrosis Factor Receptor. J. Immunol., 151: 4637–4641, 1993.PubMedGoogle Scholar
  70. 70.
    Kafoury, R. M., and Madden, M. C. Diesel Exhaust Particles Induce Over-expression of Tumor Necrosis Factor- α (TNF-α) Gene in Alveolar Macrophages and Failed to Induce Apoptosis Through Activation of Nuclear Factor- κB (NF-κ B). Int. J. Environ. Res. Public Health, 2: 107–113, 2005.CrossRefPubMedGoogle Scholar
  71. 71.
    Takeyama, K., Dabbagh, K., Lee, H. M., Agusti, C., Lausier, J. A., Ueki, I. F., Grattan, K. M., and Nadel, J. A. Epidermal Growth Factor System Regulates Mucin Production in Airways. Proc. Natl. Acad. Sci. U.S.A., 96: 3081–3086, 1999.CrossRefPubMedGoogle Scholar
  72. 72.
    Amishima, M., Munakata, M., Nasuhara, Y., Sato, A., Takahashi, T., Homma, Y., and Kawakami, Y. Expression of Epidermal Growth Factor and Epidermal Growth Factor Receptor Immunoreactivity in the Asthmatic Human Airway. Am. J. Respir. Crit. Care Med., 157: 1907–1912, 1998.PubMedGoogle Scholar
  73. 73.
    Cohen, M. D., Ciocca, V., and Panettieri, R. A. J. TGF-Beta 1 Modulates Human Airway Smooth Muscle Cell Proliferation Induced by Mitogens. Am. J. Respir. Cell Mol. Biol., 16: 85–90, 1997.PubMedGoogle Scholar
  74. 74.
    Bradding, P., Redington, A. E., and Holgate, S. T. Airway Wall Remodeling in the Pathogenesis of Asthma: Cytokine Expression in the Airways. In: A. G. Stewart (ed.), Airway Wall Remodeling in Asthma: Pharmacology & Toxicology: Basic and Clinical Aspects, pp. 29–63. Boca Raton, FL: CRC Press, 1997.Google Scholar
  75. 75.
    Tilley, S. L., Coffman, T. M., and Koller, B. H. Mixed Messages: Modulation of Inflammation and Immune Responses by Prostaglandins and Thromboxanes. J. Clin. Invest., 108: 15–23, 2001.PubMedGoogle Scholar
  76. 76.
    Kafoury, R. M., Pryor, W. A., Squadrito, G. L., Salgo, M. G., Zou, X., and Friedman, M. Induction of Inflammatory Mediators in Human Airway Epithelial Cells by Lipid Ozonation Products. Am. J. Respir. Crit. Care Med., 160: 1934–1942, 1999.PubMedGoogle Scholar
  77. 77.
    Kafoury, R. M., Pryor, W. A., Squadrito, G. L., Salgo, M. G., Zou, X., and Friedman, M. Lipid Ozonation Products Activate Phospholipases A2, C, and D. Toxicol. Appl. Pharmacol., 150: 338–349, 1998.CrossRefPubMedGoogle Scholar
  78. 78.
    Pang, L., and Knox, A. J. Effect of Interleukin-1 Beta, Tumor Necrosis Factor-Alpha and Interferon-Gamma on the Induction of Cyclooxygenase-2 in Cultured Human Airway Smooth Muscle Cells. Br. J. Pharmacol., 121: 579–587, 1997.CrossRefPubMedGoogle Scholar
  79. 79.
    Jongejan, R. C., de Jongste, J. C., Raatgeep, H. C., Stijnen, T., Bonta, I. L., and Kerrebijn, K. F. Effects of Inflammatory Mediators on the Responsiveness of Isolated Human Airways to Methacholine. Am. Rev. Respir. Dis., 142: 1129–1132, 1990.PubMedGoogle Scholar
  80. 80.
    Bandeira-Melo, C., Hall, J. C., Penrose, J. F., and Weller, P. F. Cysteinyl Leukotrienes Induce IL-4 Release from Cord Blood-derived Human Eosinophils. J. Allergy Clin. Immunol., 109: 975–979, 2002.CrossRefPubMedGoogle Scholar
  81. 81.
    Mellor, E. A., Austen, K. F., and Boyce, J. A. Cysteinyl Leukotrienes and Uridine Diphosphate Induce Cytokine Generation by Human Mast Cells Through an Interleukin-4-Regulated Pathway That Is Inhibited by Leukotriene Receptor Antagonists. J. Exp. Med., 195: 583–592, 2002.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • William A. Toscano
    • 1
  • Kristen P. Oehlke
    • 1
    • 2
  • Ramzi Kafoury
    • 3
  1. 1.Division of Environmental Health SciencesUniversity of Minnesota School of Public HealthMinneapolisUSA
  2. 2.Minnesota Department of HealthSt. PaulUSA
  3. 3.Department of BiologyJackson State UniversityJacksonUSA

Personalised recommendations