Hypersensitivity Reactions to Nanomedicines: Causative Factors and Optimization of Design Parameters

Part of the Allergy Frontiers book series (ALLERGY, volume 6)


Administration of clinically approved nanomedicines often induces non-IgE-mediated hypersdensitivity reactions in some patients. Current research strongly suggests that complement activation may be a contributing, but not a rate limiting factor in eliciting hypersensitivity reactions to nanomedicines in sensitive individuals. The molecular basis of complement activation by nanomedicines is complex and depends on nanomedicine structure and dose. These issues are discussed in relation to liposomal, micellar and polymeric nanomedicines as well as current structural design strategies to circumvent nanomedicine- mediated complement activation.


Complement Activation Visceral Leishmaniasis PEGylated Liposome Polymeric Nanospheres Polystyrene Nanospheres 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current progress and future prospects. FASEB J 19: 311–330.CrossRefPubMedGoogle Scholar
  2. 2.
    Moghimi SM, Kissel T (2006) Particulate nanomedicines. Adv Drug Deliv Rev 58: 1451–1455.CrossRefPubMedGoogle Scholar
  3. 3.
    Moghimi SM (2003) Exploitation of macrophage clearance functions in vivo. In: Gordon S (ed) Handbook of Experimental Pharmacology, Volume 158: The Macrophage as Therapeutic Target. Springer, Berlin, pp 41–54.Google Scholar
  4. 4.
    Drummond DC, Zignani M, Leroux JC (2000) Current status of pH-sensitive liposomes in drug delivery. Prog Lipid Res 39: 409–460.CrossRefPubMedGoogle Scholar
  5. 5.
    Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V (2002) Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 16: 1217–1226.CrossRefPubMedGoogle Scholar
  6. 6.
    Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparti-cles: theory to practice. Pharmacol Rev 53: 283–318.PubMedGoogle Scholar
  7. 7.
    Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ, West JL (2006) Metal nanoshells. Ann Biomed Engineering 34: 15–22.CrossRefGoogle Scholar
  8. 8.
    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100: 13549–13554.CrossRefPubMedGoogle Scholar
  9. 9.
    Sculier JP, Coune A, Brassinne C, Laduron C, Atassi G, Ruysschaert JM, Fruhling J (1986) Intravenous-infusion of high-doses of liposomes containing NSC-251635, a water-insoluble cytostatic agent—A pilot-study with pharmacokinetic data. J Clin Oncol 4: 789–797.PubMedGoogle Scholar
  10. 10.
    Laing RBS, Milne LJR, Leen CLS, Malcolm GP, Steers AJW (1994) Anaphylactic reactions to liposomal amphotericin. Lancet 344: 682.CrossRefPubMedGoogle Scholar
  11. 11.
    Levine SJ, Walsh TJ, Martinez A, Eichacker PQ, Lopez-Berstein G, Ntanson C (1991) Cardiopulmonary toxicity after liposomal amphotericin B infusion. Ann Internal Med 114: 664–666.Google Scholar
  12. 12.
    Richardson DS, Kelsey SM, Johnson SA, Tighe M, Cavenagh JD, Newland AC (1997) Early evaluation of liposomal danuorubicin (DaunoXome, Nexstar) in the treatment of relapsed and refractory lymphoma. Invest New Drugs 15: 247–253.CrossRefPubMedGoogle Scholar
  13. 13.
    Uziely B, Jeffers S, Isacson R, Kutsch K, Wei-Tsao D, Yehoshua Z, Libson E, Muggia FM, Gabizon A (1995) Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase I studies. J Clin Oncol 13: 1777–1785.PubMedGoogle Scholar
  14. 14.
    Kris MG, O'Connell JP, Gralla RJ (1986) A phase I trial of Taxol given as 3-hour infusions every 21 days. Cancer Treat Rep 70: 605–607.PubMedGoogle Scholar
  15. 15.
    Grosen E, Siitari E, Larrison E, Tiggelaar C, Roecker E (2000) Paclitaxel hypersensitivity reactions related to bee-sting allergy. Lancet 355: 288–289.CrossRefPubMedGoogle Scholar
  16. 16.
    Kattan J, Droz JP, Couvreur P, Marino JP, Boutanlaroze A, Rougier P, Brault P, Vranckx H, Grognet JM, Morge X, Sanchogarnier H (1992) Phase-I clinical-trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles. Invest New Drugs 10: 191–199.CrossRefPubMedGoogle Scholar
  17. 17.
    Szebeni J (2005) Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology 216: 106–121.CrossRefPubMedGoogle Scholar
  18. 18.
    Szebeni J, Fontana JL, Wassef NM, Mongan PD, Morse DS, Dobbins DE, Stahl GL, Bünger R, Alving CR (1999) Hemodynamic changes induced by liposomes and liposome-encapsu-lated hemoglobin in pigs. A model for pseudoallergic cardiopulmonary reactions to liposomes: role of complement and inhibition by soluble CR1 and anti-C5a antibody. Circulation 99: 2302–2309.PubMedGoogle Scholar
  19. 19.
    Moghimi SM, Hunter AC (2001) Recognition by macrophages and liver cells of opsonised phospholipid vesicles and phospholipid headgroups. Pharm Res 18: 1–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Chonn A, Cullis PR, Devine DV (1992) The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J Immunol 146: 4234–4241.Google Scholar
  21. 21.
    Bradley AJ, Brooks DE, Norris-Jones R, Devine DV (1999) C1q binding to liposomes is surface charge dependent and is inhibited by peptides consisting of residues 14–26 of the human C1qA chain in asequence independent manner. Biochim Biophys Acta 1418: 19–30.CrossRefPubMedGoogle Scholar
  22. 22.
    Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42: 463–478.CrossRefPubMedGoogle Scholar
  23. 23.
    Chanan-Khan A, Szebeni J, Savay S, Liebes L, Rafique NM, Alving CR, Muggia FM (2003) Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann Oncol 14: 1430–1437.CrossRefPubMedGoogle Scholar
  24. 24.
    Dams ET, Oyen WJ, Boerman OC, Storm G, Laverman P, Kok PJ, Buijs WC, Bakker H, van der Meer JW, Corstens FH (2000) 99m Tc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation. J Nucl Med 41: 622–630.PubMedGoogle Scholar
  25. 25.
    Moghimi SM, Hamad I, Andresen TL, Jørgensen K, Szebeni J (2006) Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production. FASEB J 20: 2592–2593 (E2057–E2067).CrossRefGoogle Scholar
  26. 26.
    Zalipsky S, Barenholz Y (2004) Liposome composition for reduction of liposome-induced complement activation. PCT Patent Application W/O 2004/078121.Google Scholar
  27. 27.
    Szebeni J, Alving CR, Savay S, Barenholz Y, Priev A, Danino D, Talmon Y (2001) Formation of complement-activating particles in aqueous solutions of Taxol: possible role in hypersensi-tivity reactions. Int Immunopharmacol 1: 721–735.CrossRefPubMedGoogle Scholar
  28. 28.
    Rowinsky EK, Eisenhauer EA, Chaudhry V, Arbuck SG, Donehower RC (1993) Clinical toxicities encountered with paclitaxel (Taxol). Semin Oncol 20: 1–15.PubMedGoogle Scholar
  29. 29.
    Guchelaar HJ, ten Napel CH, de Vries EG, Mulder NH (1994) Clinical, toxicological and pharmaceutical aspects of antineoplastic drug taxol: a review. Clin Oncol 6: 40–48.CrossRefGoogle Scholar
  30. 30.
    Szebeni J, Muggia FM, Alving CR (1998) Complement activation by Cremophor EL as a possible contributor to hypersensitivity to paclitaxel: an in vitro study. J Natl Cancer Inst 90: 300–306.CrossRefPubMedGoogle Scholar
  31. 31.
    Kessel D, Woodburn K, Kecker D, Sykes E (1995) Fractionation of Cremophor EL delineates components responsible for plasma lipoprotein alterations and multidrug resistance reversal. Oncol Res 7: 207–212.PubMedGoogle Scholar
  32. 32.
    Moghimi SM, Hunter AC (2000) Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trend Biotechnol 18: 412–420.CrossRefGoogle Scholar
  33. 33.
    Vercellotti GM, Hammerschmidt DE, Craddock PR, Jacob HS (1982) Activation of plasma complement by perfluorocarbon artificial blood: probable mechanism of adverse pulmonary reactions in treated patients and rationale for corticosteroid prophylaxis. Blood 59: 1299–1304.PubMedGoogle Scholar
  34. 34.
    Cabana A, Aït-Kadi A, Juhász J (1997) Study of the gelation process of polyethylene oxide a-polypropylene oxide b-polyethylene oxidea copolymer (poloxamer 407) aqueous solutions. J Colloid Interface Sci 190: 307–312.CrossRefPubMedGoogle Scholar
  35. 35.
    Raymond J, Metcalfe A, Salazkin I, Schwarz A (2004) Temporary vascular occlusion with poloxamer 407. Biomaterials 25: 3983–3989.CrossRefPubMedGoogle Scholar
  36. 36.
    Faithfull NS, Cain SM (1988) Cardiorespiratory consequences of fluorocarbon reactions in dogs. Biomaterial Artif Cells Artif Organs 16: 463–472.Google Scholar
  37. 37.
    Lustig R, McIntosh-Lowe N, Rose C, Haas J, Krasnow S, Spaulding M, Prosnitz L (1989) Phase I/II study of Fluosol-DA and 100% oxygen as an adjuvant to radiation in the treatment of advanced squamous cell tumours of the head and neck. Int J Radiat Oncol Biol Phys 16: 1587–1593.PubMedGoogle Scholar
  38. 38.
    Moghimi SM, Hunter AC, Dadswell CM, Savay S, Alving CR, Szebeni J (2004) Causative factors behind poloxamer 188 (Pluronic F68, Flocor™)-induced complement activation in human sera. Protective role against poloxamer-mediated complement activation by elevated serum lipoprotein levels. Biochim Biophys Acta 1689: 103–113.PubMedGoogle Scholar
  39. 39.
    Kent KM, Cleman MW, Cowley MJ, Forman MB, Jaffe CC, Kaplan M, King SB, Krucoff MW, Lassar T, Mcauley B, Smith R, Wisdom C, Wohlgelernter D (1990) Reduction of myocardial ischemia during percutaneous coronary angioplasty with oxygenated Fluosol. Am J Cardiol 66: 279–284.CrossRefPubMedGoogle Scholar
  40. 40.
    Hamilton KK, Zhao J, Sims PJ (1993) Interaction between apolipoproteins A-I and A-II and the membrane attack complex of complement. Affinity of the apoproteins for polymeric C9. J Biol Chem 268: 3632–3638.PubMedGoogle Scholar
  41. 41.
    Moghimi SM (2006) Recent development in polymeric nanoparticle engineering and their applications in experimental and clinical oncology. Anti-Cancer Agents Med Chem 6: 553–561.CrossRefGoogle Scholar
  42. 42.
    Gbadamosi JK, Hunter AC, Moghimi SM (2002) PEGylation of microspheres generates a heterogeneous population of particles with differential surface characteristics and biological performance. FEBS Lett 532: 338–344.CrossRefPubMedGoogle Scholar
  43. 43.
    Al-Hanbali O, Rutt KJ, Sarker DK, Hunter AC, Moghimi SM (2006) Concentration dependent structural ordering of poloxamine 908 on polystyrene nanoparticles and their modulatory role on complement consumption. J Nanosci Nanotechnol 6: 3126–3133.CrossRefPubMedGoogle Scholar
  44. 44.
    Sparreboom A, Scripture CD, Trieu V, Williams PJ, De T, Yang A, Beals B, Figg WD, Hawkins M, Desai N (2005) Comparative preclinical and clinical pharmacokinetics of a Cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clin Cancer Res 11: 4136–4143.CrossRefPubMedGoogle Scholar
  45. 45.
    Singh M, O'Hagan D (1999) Advances in vaccine adjuvants. Nat Biotechnol 17: 1075–1081.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical SciencesUniversity of CopenhagenUniversitestparken 2Denmark
  2. 2.Molecular Targeting and Polymer Toxicology Group, School of PharmacyUniversity of BrightonBrightonUK

Personalised recommendations