Advertisement

Mechanisms of Action of β2 Adrenoceptor Agonists

  • Ian P. Hall
  • Ian Sayers
Part of the Allergy Frontiers book series (ALLERGY, volume 5)

β2 adrenoceptor agonists have been the main stay bronchodilator agents used for the management of asthma for the last 50 years. These drugs have proven to be the most effective bronchodilators available. The first agent used widely in the management of asthma was isoprenaline (isoproterenol), a nonselective β adrenoceptor agonist. This was replaced by short acting β2 adrenoceptor selective agents, often called SABAs; the main agents used are salbutamol (albuterol) and terbutaline. More recently, long acting β2 agonists (LABAs), which have a prolonged duration of bronchodilator effect, have been developed, the major examples being formot-erol and salmeterol. A number of new LABAs are currently in development or phase II/III clinical trials, including agents such as indacaterol. This chapter deals with the molecular pharmacology underlying the control of β2 adrenoceptor signalling.

Keywords

Airway Smooth Muscle Allergy Clin Immunol Adrenoceptor Agonist Human Airway Smooth Muscle Cell ADRB2 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    JR Carstairs, AJ Nimmo, and PJ Barnes, (1985). Autoradiographic visualization of beta-adrenoceptor subtypes in human lung. Am Rev Respir Dis, 132(3): p. 541–7.PubMedGoogle Scholar
  2. 2.
    F Qing, CG Rhodes, MJ Hayes, T Krausz, SW Fountain, T Jones, and JM Hughes, (1996). In vivo quantification of human pulmonary beta-adrenoceptor density using PET: Comparison with in vitro radioligand binding. J Nucl Med, 37(8): p. 1275–81.PubMedGoogle Scholar
  3. 3.
    B Rozec and C Gauthier, (2006). Beta3-adrenoceptors in the cardiovascular system: Putative roles in human pathologies. Pharmacol Ther, 111: p. 652–73.CrossRefPubMedGoogle Scholar
  4. 4.
    JG Baker, IP Hall, and SJ Hill, (2003). Agonist and inverse agonist actions of beta-blockers at the human beta 2-adrenoceptor provide evidence for agonist-directed signaling. Mol Pharmacol, 64: p. 1357–69.CrossRefPubMedGoogle Scholar
  5. 5.
    BK Kobilka, RA Dixon, T Frielle, HG Dohlman, MA Bolanowski, IS Sigal, TL Yang-Feng, U Francke, MG Caron, and RJ Lefkowitz, (1987). cDNA for the human beta 2-adrenergic receptor: A protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci USA, 84(1): p. 46–50.CrossRefPubMedGoogle Scholar
  6. 6.
    AL Parola and BK Kobilka, (1994). The peptide product of a 5' leader cistron in the beta 2 adrenergic receptor mRNA inhibits receptor synthesis. J Biol Chem, 269(6): p. 4497–505.PubMedGoogle Scholar
  7. 7.
    SE Johnatty, M Abdellatif, L Shimmin, RB Clark, and E Boerwinkle, (2002). Beta 2 adrener-gic receptor 5' haplotypes influence promoter activity. Br J Pharmacol, 137(8): p. 1213–6.CrossRefPubMedGoogle Scholar
  8. 8.
    DW McGraw, SL Forbes, LA Kramer, and SB Liggett, (1998). Polymorphisms of the 5' leader cistron of the human beta2-adrenergic receptor regulate receptor expression. J Clin Invest, 102(11): p. 1927–32.CrossRefPubMedGoogle Scholar
  9. 9.
    MG Scott, C Swan, AP Wheatley, and IP Hall, (1999). Identification of novel polymorphisms within the promoter region of the human beta2 adrenergic receptor gene. Br J Pharmacol, 126(4): p. 841–4.CrossRefPubMedGoogle Scholar
  10. 10.
    PL Freddolino, MY Kalani, N Vaidehi, WB Floriano, SE Hall, RJ Trabanino, VW Kam, and WA Goddard, 3rd, (2004). Predicted 3D structure for the human beta 2 adrenergic receptor and its binding site for agonists and antagonists. Proc Natl Acad Sci USA, 101(9): p. 2736–41.CrossRefPubMedGoogle Scholar
  11. 11.
    CD Strader, IS Sigal, MR Candelore, E Rands, WS Hill, and RA Dixon, (1988). Conserved aspartic acid residues 79 and 113 of the beta-adrenergic receptor have different roles in receptor function. J Biol Chem, 263(21): p. 10267–71.PubMedGoogle Scholar
  12. 12.
    K Wieland, HM Zuurmond, C Krasel, AP Ijzerman, and MJ Lohse, (1996). Involvement of Asn-293 in stereospecific agonist recognition and in activation of the beta 2-adrenergic receptor. Proc Natl Acad Sci USA, 93(17): p. 9276–81.CrossRefPubMedGoogle Scholar
  13. 13.
    G Liapakis, JA Ballesteros, S Papachristou, WC Chan, X Chen, and JA Javitch, (2000). The forgotten serine. A critical role for Ser-2035.42 in ligand binding to and activation of the beta 2-adrenergic receptor. J Biol Chem, 275(48): p. 3777CrossRefGoogle Scholar
  14. 14.
    CD Strader, MR Candelore, WS Hill, IS Sigal, and RA Dixon, (1989). Identification of two serine residues involved in agonist activation of the beta-adrenergic receptor. J Biol Chem, 264(23): p. 13572–8.PubMedGoogle Scholar
  15. 15.
    V Iyer, TM Tran, E Foster, W Dai, RB Clark, and BJ Knoll, (2006). Differential phosphoryla-tion and dephosphorylation of beta2-adrenoceptor sites Ser262 and Ser355,356. Br J Pharmacol, 147(3): p. 249–59.CrossRefPubMedGoogle Scholar
  16. 16.
    SB Liggett, M Bouvier, WP Hausdorff, B O'Dowd, MG Caron, and RJ Lefkowitz, (1989). Altered patterns of agonist-stimulated cAMP accumulation in cells expressing mutant beta 2-adrenergic receptors lacking phosphorylation sites. Mol Pharmacol, 36(4): p. 641–6.PubMedGoogle Scholar
  17. 17.
    SB Liggett, (2002). Update on current concepts of the molecular basis of beta2-adrenergic receptor signaling. J Allergy Clin Immunol, 110(6 Suppl): p. S223–7.CrossRefPubMedGoogle Scholar
  18. 18.
    H Kume, IP Hall, RJ Washabau, K Takagi, and MI Kotlikoff, (1994). Beta-adrenergic agonists regulate Kca channels in airway smooth muscle by cAMP-dependent and -independent mechanisms. J Clin Invest, 93: p. 371–9CrossRefPubMedGoogle Scholar
  19. 19.
    Y Daaka, LM Luttrell, and RJ Lefkowitz, (1997). Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature, 390(6655): p. 88–91.CrossRefPubMedGoogle Scholar
  20. 20.
    IR Le Jeune, M Shepherd, G Van Heeke, MD Houslay, and IP Hall, (2002). Cyclic AMP-dependent transcriptional up-regulation of phosphodiesterase 4D5 in human airway smooth muscle cells. Identification and characterization of a novel PDE4D5 promoter. J Biol Chem, 277(39): p. 35980–9.CrossRefPubMedGoogle Scholar
  21. 21.
    CK Billington, IR Le Jeune, KW Young, and IP Hall, (2008). A major functional role for phosphodiesterase 4D5 in human airway smooth muscle cells. Am J Respir Cell Mol Biol, 38: p. 1–7.CrossRefPubMedGoogle Scholar
  22. 22.
    G Marone, G Ambrosio, D Bonaduce, A Genovese, M Triggiani, and M Condorelli, (1984). Inhibition of IgE-mediated histamine release from human basophils and mast cells by fenoterol. Int Arch Allergy Appl Immunol, 74(4): p. 356–61.CrossRefPubMedGoogle Scholar
  23. 23.
    SG Kelsen, O Anakwe, MO Aksoy, PJ Reddy, and N Dhanasekaran, (1997). IL-1 beta alters beta-adrenergic receptor adenylyl cyclase system function in human airway epithelial cells. Am J Physiol, 273(3 Pt 1): p. L694–700.PubMedGoogle Scholar
  24. 24.
    IP Hall, (2000). Second messengers, ion channels and pharmacology of airway smooth muscle. Eur Respir J, 15(6): p. 1120–7.CrossRefPubMedGoogle Scholar
  25. 25.
    MO Aksoy, IA Mardini, Y Yang, W Bin, S Zhou, and SG Kelsen, (2002). Glucocorticoid effects on the beta-adrenergic receptor-adenylyl cyclase system of human airway epithelium. J Allergy Clin Immunol, 109: p. 491–7.CrossRefPubMedGoogle Scholar
  26. 26.
    PB Bolton, P Lefevre, and DM McDonald, (1997). Salmeterol reduces early- and late-phase plasma leakage and leukocyte adhesion in rat airways. Am J Respir Crit Care Med, 155(4): p. 1428–35.PubMedGoogle Scholar
  27. 27.
    S Danner, M Frank, and MJ Lohse, (1998). Agonist regulation of human beta2-adrenergic receptor mRNA stability occurs via a specific AU-rich element. J Biol Chem, 273(6): p. 3223–9.CrossRefPubMedGoogle Scholar
  28. 28.
    K Subramaniam, K Chen, K Joseph, JR Raymond, and BG Tholanikunnel, (2004). The 3′ -untranslated region of the beta2-adrenergic receptor mRNA regulates receptor synthesis. J Biol Chem, 279(26): p. 27108–15.CrossRefPubMedGoogle Scholar
  29. 29.
    S Collins, M Bouvier, MA Bolanowski, MG Caron, and RJ Lefkowitz, (1989). cAMP stimulates transcription of the beta 2-adrenergic receptor gene in response to short-term agonist exposure. Proc Natl Acad Sci USA, 86(13): p. 4853–7.CrossRefPubMedGoogle Scholar
  30. 30.
    S Collins, J Altschmied, O Herbsman, MG Caron, PL Mellon, and RJ Lefkowitz, (1990). A cAMP response element in the beta 2-adrenergic receptor gene confers transcriptional autoregulation by cAMP. J Biol Chem, 265(31): p. 19330–5.PubMedGoogle Scholar
  31. 31.
    JC Mak, M Nishikawa, and PJ Barnes, (1995). Glucocorticosteroids increase beta 2-adrener-gic receptor transcription in human lung. Am J Physiol, 268(1 Pt 1): p. L41–6.PubMedGoogle Scholar
  32. 32.
    SK Shenoy, PH McDonald, TA Kohout, and RJ Lefkowitz, (2001). Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science, 294(5545): p. 1307–13.CrossRefPubMedGoogle Scholar
  33. 33.
    J Mialet-Perez, SA Green, WE Miller, and SB Liggett, (2004). A primate-dominant third glycosylation site of the beta2-adrenergic receptor routes receptors to degradation during agonist regulation. J Biol Chem, 279(37): p. 38603–7.CrossRefPubMedGoogle Scholar
  34. 34.
    B Lipworth, GH Koppelman, AP Wheatley, et al., (2002) Beta2 adrenoceptor promoter polymorphisms: Extended haplotypes and functional effects in peripheral blood mononuclear cells. Thorax, 57: p. 61.CrossRefPubMedGoogle Scholar
  35. 35.
    IM Adcock, K Maneechotesuwan, and O Usmani, (2002). Molecular interactions between glucocorticoids and long-acting beta2-agonists. J Allergy Clin Immunol, 110(6 Suppl): p. S261–8.CrossRefPubMedGoogle Scholar
  36. 36.
    CK Billington, RM Pascual, ML Hawkins, RB Penn, and IP Hall, (2001). Interleukin-1ß and rhinovirus sensitize adenylyl cyclase in human airway smooth muscle cells. Am J Respir Cell Mol Biol, 24(5): p. 633–9.PubMedGoogle Scholar
  37. 37.
    AM Freyer, CK Billington, RB Penn, and IP Hall, (2004). Extracellular matrix modulates beta2-adrenergic receptor signalling in human airway smooth muscle cells. Am J Respir Cell Mol Biol, 31(4): p. 440–5.CrossRefPubMedGoogle Scholar
  38. 38.
    DW McGraw, SL Forbes, JC Mak, DP Witte, PE Carrigan, GD Leikauf, and SB Liggett, (2000). Transgenic overexpression of beta(2)-adrenergic receptors in airway epithelial cells decreases bronchoconstriction. Am J Physiol Lung Cell Mol Physiol, 279: p. L379–89.PubMedGoogle Scholar
  39. 39.
    DW McGraw, SL Forbes, LA Kramer, DP Witte, CN Fortner, RJ Paul, and SB Liggett, (1999). Transgenic overexpression of beta(2)-adrenergic receptors in airway smooth muscle alters myocyte function and ablates bronchial hyperreactivity. J Biol Chem, 274: p. 32241–7.CrossRefPubMedGoogle Scholar
  40. 40.
    DW McGraw, KF Almoosa, RJ Paul, BK Kobilka, and SB Liggett, (2003). Antithetic regulation by beta-adrenergic receptors of Gq receptor signaling via phospholipase C underlies the airway beta-agonist paradox. J Clin Invest, 112: p. 619–26.PubMedGoogle Scholar
  41. 41.
    I Sayers, C Swan, and IP Hall, (2006). The effect of beta2-adrenoceptor agonists on phospho-lipase C (beta1) signalling in human airway smooth muscle cells. Eur J Pharmacol, 531: p. 9–12.CrossRefPubMedGoogle Scholar
  42. 42.
    P Barnes, J Drazen, S Rennard, and N Thomson (eds), (2002). β2 -adrenoceptor agonists. In: Asthma and COPD: basic mechanisms and clinical management. Elsevier Academic, London.Google Scholar
  43. 43.
    KM Beeh, E Derom, F Kanniess, R Cameron, M Higgins, and A van As, (2007). Indacaterol, a novel inhaled beta2-agonist, provides sustained 24-h bronchodilation in asthma. Eur Respir J, 29: p. 871–8.CrossRefPubMedGoogle Scholar
  44. 44.
    M Johnson, (2006). Molecular mechanisms of beta(2)-adrenergic receptor function, response, and regulation. J Allergy Clin Immunol, 117(1): p. 18–24CrossRefPubMedGoogle Scholar
  45. 45.
    CP Page and J Morley, (1999). Contrasting properties of albuterol stereoisomers. J Allergy Clin Immunol, 104(2 Pt 2): p. S31–41.CrossRefPubMedGoogle Scholar
  46. 46.
    N Pearce, J Grainger, M Atkinson, J Crane, C Burgess, C Culling, H Windom, and R Beasley, (1990). Case-control study of prescribed fenoterol and death from asthma in New Zealand, 1977–1981. Thorax, 45: p. 170–5.CrossRefPubMedGoogle Scholar
  47. 47.
    J Crane, N Pearce, A Flatt, C Burgess, R Jackson, T Kwong, M Ball, and R Beasley, (1989). Prescribed fenoterol and death from asthma in New Zealand, 1981–1983: Case-control study. Lancet, 1(8644): p. 917–22.CrossRefPubMedGoogle Scholar
  48. 48.
    HS Nelson, ST Weiss, ER Bleecker, SW Yancey, and PM Dorinsky, (2006). The salmeterol multicenter asthma research trial: A comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol. Chest, 129(1): p. 15–26.CrossRefPubMedGoogle Scholar
  49. 49.
    AR Guhan, S Cooper, J Oborne, S Lewis, J Bennett, and AE Tattersfield, (2000). Systemic effects of formoterol and salmeterol: A dose-response comparison in healthy subjects. Thorax, 55: p. 650–6.CrossRefPubMedGoogle Scholar
  50. 50.
    MR Sears, DR Taylor, CG Print, et al., (1990). Regular inhaled ß-agonist treatment in bronchial asthma. Lancet, 336: p. 1391.CrossRefPubMedGoogle Scholar
  51. 51.
    BJ Lipworth, IP Hall, I Aziz, KS Tan, and A Wheatley, (1999). Beta2-adrenoceptor polymorphism and bronchoprotective sensitivity with regular short- and long-acting beta2-agonist therapy. Clin Sci (Lond), 96(3): p. 253–9.CrossRefGoogle Scholar
  52. 52.
    S Tan, IP Hall, J Dewar, E Dow, and B Lipworth, (1997). Association between beta 2-adrenoceptor polymorphism and susceptibility to bronchodilator desensitisation in moderately severe stable asthmatics. Lancet, 350(9083): p. 995–9.CrossRefPubMedGoogle Scholar
  53. 53.
    CP van Schayck, E Dompeling, CLA van Herwaarden, et al., (1991). Bronchodilator treatment in moderate asthma or chronic bronchitis: continuous or on demand? A randomised controlled study. BMJ, 303: p. 1426.CrossRefPubMedGoogle Scholar
  54. 54.
    DG Contopoulos-Ioannidis, EN Manoli, and JP Ioannidis, (2005). Meta-analysis of the association of beta2-adrenergic receptor polymorphisms with asthma phenotypes. J Allergy Clin Immunol, 115(5): p. 963–72.CrossRefPubMedGoogle Scholar
  55. 55.
    A Thakkinstian, M McEvoy, C Minelli, P Gibson, B Hancox, D Duffy, J Thompson, I Hall, J Kaufman, TF Leung, PJ Helms, H Hakonarson, E Halpi, R Navon, and J Attia, (2005). Systematic review and meta-analysis of the association between {beta}2-adrenoceptor polymorphisms and asthma: A HuGE review. Am J Epidemiol, 162(3): p. 201–11.CrossRefPubMedGoogle Scholar
  56. 56.
    IP Hall, JD Blakey, KA Al Balushi, A Wheatley, I Sayers, ME Pembrey, SM Ring, WL McArdle, and DP Strachan, (2006). Beta2-adrenoceptor polymorphisms and asthma from childhood to middle age in the British 1958 birth cohort: A genetic association study. Lancet, 368(9537): p. 771–9.CrossRefPubMedGoogle Scholar
  57. 57.
    E Israel, JM Drazen, SB Liggett, HA Boushey, RM Cherniack, VM Chinchilli, DM Cooper, JV Fahy, JE Fish, JG Ford, M Kraft, S Kunselman, SC Lazarus, RF Lemanske, RJ Martin, DE McLean, SP Peters, EK Silverman, CA Sorkness, SJ Szefler, ST Weiss, and CN Yandava, (2000). The effect of polymorphisms of the beta(2)-adrenergic receptor on the response to regular use of albuterol in asthma. Am J Respir Crit Care Med, 162(1): p. 75–80.PubMedGoogle Scholar
  58. 58.
    E Israel, VM Chinchilli, JG Ford, HA Boushey, R Cherniack, TJ Craig, A Deykin, JK Fagan, JV Fahy, J Fish, M Kraft, SJ Kunselman, SC Lazarus, RF Lemanske, Jr., SB Liggett, RJ Martin, N Mitra, SP Peters, E Silverman, CA Sorkness, SJ Szefler, ME Wechsler, ST Weiss, and JM Drazen, (2004). Use of regularly scheduled albuterol treatment in asthma: Genotype-stratified, randomised, placebo-controlled cross-over trial. Lancet, 364(9444): p. 1505–12.CrossRefPubMedGoogle Scholar
  59. 59.
    ME Wechsler, E Lehman, SC Lazarus, RF Lemanske, Jr., HA Boushey, A Deykin, JV Fahy, CA Sorkness, VM Chinchilli, TJ Craig, E DiMango, M Kraft, F Leone, RJ Martin, SP Peters, SJ Szefler, W Liu, and E Israel, (2006). Beta-Adrenergic receptor polymorphisms and response to salmeterol. Am J Respir Crit Care Med, 173(5): p. 519–26.CrossRefPubMedGoogle Scholar
  60. 60.
    ER Bleecker, SW Yancey, LA Baitinger, LD Edwards, M Klotsman, WH Anderson, and PM Dorinsky, (2006). Salmeterol response is not affected by beta2-adrenergic receptor genotype in subjects with persistent asthma. J Allergy Clin Immunol, 118: p. 809–16.CrossRefPubMedGoogle Scholar
  61. 61.
    E Reihsaus, M Innis, N MacIntyre, and SB Liggett, (1993). Mutations in the gene encoding for the beta 2-adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol, 8: p. 334–9.PubMedGoogle Scholar
  62. 62.
    CK Billington and RB Penn, (2003). Signaling and regulation of G protein-coupled receptors in airway smooth muscle. Respir Res, 4: p. 2.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ian P. Hall
    • 1
  • Ian Sayers
    • 1
  1. 1.Division of Therapeutics and Molecular MedicineUniversity Hospital of NottinghamNottinghamUK

Personalised recommendations