Antileukotrienes in Asthma and Rhinitis

Part of the Allergy Frontiers book series (ALLERGY, volume 5)

Leukotrienes are lipid mediators synthesized from arachidonic acid liberated from the membranes of activated inflammatory cells [1]. The subfamily of cysteinyl-leukotrienes (cys-LTs) represented by LTC4, LTD4 and LTE4 are the first inflammatory mediators to have a proven role in the pathophysiology of asthma [2] and which mimic many of the features of allergic rhinitis [3]. Antileukotriene drugs that block the synthesis of leukotrienes or antagonize cys-LT receptors have been licensed for asthma therapy in most countries in the last dozen years [4], with some of these drugs also being registered for use in allergic rhinitis [2]. This chapter will outline the sources and actions of cys-LTs in allergic airway inflammation and the clinical evidence underlying the use of antileukotriene drugs in asthma and allergic rhinitis.


Allergic Rhinitis Allergy Clin Immunol Respir Crit Exhale Breath Condensate Seasonal Allergic Rhinitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1874.PubMedCrossRefGoogle Scholar
  2. 2.
    Montuschi P, Sala A, Dahlen SE, Folco G (2007) Pharmacological modulation of the leukot-riene pathway in allergic airway disease. Drug Discov Today 12:404–412.PubMedCrossRefGoogle Scholar
  3. 3.
    Peters-Golden M, Gleason MM, Togias A (2006) Cysteinyl-leukotrienes: multifunctional mediators in allergic rhinitis. Clin Exp Allergy 36:689–703.PubMedCrossRefGoogle Scholar
  4. 4.
    Drazen JM, Israel E, O'Byrne PM (1999) Treatment of asthma with drugs modifying the leukotriene pathway. N Engl J Med 340:197–206.PubMedCrossRefGoogle Scholar
  5. 5.
    Bruynzeel PL, Kok PT, Hamelink ML, Kijne AM, Verhagen J (1985) Exclusive leukotriene C4 synthesis by purified human eosinophils induced by opsonized zymosan. FEBS Lett 189:350–354.PubMedCrossRefGoogle Scholar
  6. 6.
    Coffey MJ, Wilcoxen SE, Peters-Golden P (1994) Increases in 5-lipoxygenase activating protein expression account for enhanced capacity for 5-lipoxygenase metabolism that accompanies differentiation of peripheral blood monocytes into alveolar macrophages. Am J Respir Cell Mol Biol 11:153–158.PubMedGoogle Scholar
  7. 7.
    Freeland HS, Schleimer RP, Schulman ES, Lichtenstein LM, Peters SP (1988) Generation of leukotriene B4 by human lung fragments and purified human lung mast cells. Am Rev Respir Dis 138:389–394.PubMedGoogle Scholar
  8. 8.
    Jakobsson PJ, Steinhilber D, Odlander B, Radmark O, Claesson HE, Samuelsson B (1992) On the expression and regulation of 5-lipoxygenase in human lymphocytes. Proc Natl Acad Sci USA 89:3521–3525.PubMedCrossRefGoogle Scholar
  9. 9.
    Behera AK, Kumar M, Matsuse H, Lockey RF, Mohapatra SS (1998) Respiratory syncytial virus induces the expression of 5-lipoxygenase and endothelin-1 in bronchial epithelial cells. Biochem Biophys Res Commun 251:704–709.PubMedCrossRefGoogle Scholar
  10. 10.
    James AJ, Lackie PM, Cazaly AM, Sayers I, Penrose JF, Holgate ST, Sampson AP (2007) Human bronchial epithelial cells express an active and inducible biosynthetic pathway for leukotrienes B4 and C4. Clin Exp Allergy 37:880–892.CrossRefGoogle Scholar
  11. 11.
    Medina JF, Barrios C, Funk CD, Larsson O, Haeggstrom J, Radmark O (1990) Human fibro-blasts show expression of the leukotriene A4 hydrolase gene, which is increased after simian-virus-40 transformation. Eur J Biochem 191:27–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Sjostrom M, Jakobsson PJ, Heimburger M, Palmblad J, Haeggstrom JZ (2001) Human umbilical vein endothelial cells generate leukotriene C4 via microsomal glutathione S-transferase type 2 and express the CysLT1 receptor. Eur J Biochem 268:2578–2586.PubMedCrossRefGoogle Scholar
  13. 13.
    James AJ, Penrose JF, Cazaly AM, Holgate ST, Sampson AP (2006) Human bronchial fibro-blasts express the 5-lipoxygenase pathway. Respir Res 7:102.PubMedCrossRefGoogle Scholar
  14. 14.
    Buckner CK, Krell RD, Laravuso RB, Coursin DB, Bernstein PR, Will JA (1986) Pharmacological evidence that human intralobar airways do not contain different receptors that mediate contractions to LTC4 and D4. J Pharmacol Exp Ther 237:558–562.PubMedGoogle Scholar
  15. 15.
    Labat C, Ortiz JL, Norel X, Gorenne I, Verley J, Abram TS, Cuthbert NJ, Tudhope SR, Norman P, Gardiner P (1992) A second cysteinyl leukotriene receptor in human lung. J Pharmacol Exp Ther 263:800–805.PubMedGoogle Scholar
  16. 16.
    Lynch KR, O'Neill GP, Liu Q, Im DS, Sawyer N, Metters KM, Coulombe N, Abramovitz M, Figueroa DJ, Zeng Z, Connolly BM, Bai C, Austin CP, Chateauneuf A, Stocco R, Greig GM, Kargman S, Hooks SB, Hosfield E, Williams DLJ, Ford-Hutchinson AW, Caskey CT, Evans JF (1999) Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 399:789–793.PubMedCrossRefGoogle Scholar
  17. 17.
    Heise CE, O'Dowd BF, Figueroa DJ, Sawyer N, Nguyen T, Im DS, Stocco R, Bellefeuille JN, Abramovitz M, Cheng R, Williams DL, Zeng Z, Liu Q, Ma L, Clements MK, Coulombe N, Liu Y, Austin CP, George SR, O'Neill GP, Metters KM, Lynch KR, Evans JF (2000) Characterization of the human CysLT2 receptor. J Biol Chem 275:30531–30536.PubMedCrossRefGoogle Scholar
  18. 18.
    Takasaki J, Kamohara M, Matsumoto M, Saito T, Sugimoto T, Ohishi T, Ishii H, Ota T, Nishikawa T, Kawai Y, Masuho Y, Isogai T, Suzuki Y, Sugano S, Furuichi K (2000) The molecular characterization and tissue distribution of the human cysteinyl leukotriene CysLT2 receptor. Biochem Biophys Res Commun 274:2 316–322.CrossRefGoogle Scholar
  19. 19.
    Figueroa DJ, Breyer RM, Defoe SK, Kargman S, Daugherty BL, Waldburger K, Liu Q, Clements M, Zeng Z, O'Neill GP, Jones TR, Lynch KR, Austin CP, Evans JF (2001) Expression of the cys-LT1 receptor in normal human lung and peripheral blood leukocytes. Am J Respir Crit Care Med 163:226–233.PubMedGoogle Scholar
  20. 20.
    Gauvreau GM, Plitt JR, Baatjes A, MacGlashan DW (2005) Expression of functional cys-leukotriene receptors by human basophils. J Allergy Clin Immunol 116:80–87.PubMedCrossRefGoogle Scholar
  21. 21.
    Izumi T, Yokomizo T, Obinata H, Ogasawara H, Shimizu T (2002) Leukotriene receptors: classification, gene expression and signal transduction. J Biochem 132:1–6PubMedGoogle Scholar
  22. 22.
    Ciana P, Fumagalli M, Trincavelli ML, Verderio C, Rosa P, Lecca D, Ferrario S, Parravicini C, Capra V, Gelosa P, Guerrini U, Belcredito S, Cimino M, Sironi L, Tremoli E, Rovati GE, Martini C, Abbracchio MP (2006) The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO J 25:4615–4627.PubMedCrossRefGoogle Scholar
  23. 23.
    Sampson SE, Costello JF, Sampson AP (1997) The effect of inhaled leukotriene B4 in normal and in asthmatic subjects. Am J Respir Crit Care Med 155:1789–1792.PubMedGoogle Scholar
  24. 24.
    Weiss JW, Drazen JM, Coles N, McFadden ER, Lewis R, Weller P, Corey EJ, Austen KF (1982) Bronchoconstrictor effects of leukotriene C in humans. Science 216:196–198.PubMedCrossRefGoogle Scholar
  25. 25.
    Griffin M, Weiss JW, Leitch AG, McFadden ER, Corey EJ, Austen KF, Drazen JM (1983) Effects of leukotriene D on the airways in asthma. N Engl J Med 308:436–439.PubMedCrossRefGoogle Scholar
  26. 26.
    Adelroth E, Morris MM, Hargreave FE, O'Byrne PM (1986) Airway responsiveness to leu-kotrienes C4 and D4 and to methacholine in patients with asthma and normal controls. N Engl J Med 315:480–484.PubMedGoogle Scholar
  27. 27.
    Arm JP, Spur BW, Lee TH (1988) The effects of inhaled leukotriene E4 on the airway responsiveness to histamine in subjects with asthma and normal subjects. J Allergy Clin Immunol 82:654–660.PubMedCrossRefGoogle Scholar
  28. 28.
    Joris I, Majno G, Corey EJ, Lewis RA (1987) The mechanism of vascular leakage induced by leukotriene E4. Am J Pathol 126:19–24.PubMedGoogle Scholar
  29. 29.
    Beller TC, Friend DS, Maekawa A, Lam BK, Austen KF, Kanaoka Y (2004) Cysteinyl leu-kotriene 1 receptor controls the severity of chronic pulmonary inflammation and fibrosis. Proc Natl Acad Sci USA 101:3047–3052.PubMedCrossRefGoogle Scholar
  30. 30.
    Camp RD, Coutts AA, Greaves MW, Kay AB, Walport MJ (1983) Responses of human skin to intradermal injection of leukotrienes C4, D4 and B4. Br J Pharmacol 80:497–502.PubMedGoogle Scholar
  31. 31.
    Bisgaard H (1987) Vascular effects of LTD4 in human skin. J Invest Dermatol 88:109–114.PubMedCrossRefGoogle Scholar
  32. 32.
    Bisgaard H, Olsson P, Bende M (1986) Effect of leukotriene D4 on nasal mucosal blood flow, nasal airway resistance and nasal secretion in humans. Clin Allergy 16:289–297.PubMedCrossRefGoogle Scholar
  33. 33.
    Woodward DF, Weichman BM, Gill CA, Wasserman MA (1983) The effect of synthetic leu-kotrienes on tracheal microvascular permeability. Prostaglandins 25:131–142.PubMedCrossRefGoogle Scholar
  34. 34.
    Pedersen KE, Bochner BS, Undem BJ (1987) Cysteinyl leukotrienes induce P-selectin expression in human endothelial cells via a non-CysLT1 receptor-mediated mechanism. J Pharmacol Exp Ther 281:655–662.Google Scholar
  35. 35.
    Sjostrom M, Johansson AS, Schroder O, Qiu H, Palmblad J, Haeggstrom JZ (2003) Dominant expression of the CysLT2 receptor accounts for calcium signaling by cys-leukotrienes in human umbilical vein endothelial cells. Arterioscler Thromb Vasc Biol 23:e37–e41.PubMedCrossRefGoogle Scholar
  36. 36.
    Symon FA, Lawrence MB, Williamson ML, Walsh GM, Watson SR, Wardlaw AJ (1996) Functional and structural characterization of the eosinophil P-selectin ligand. J Immunol 157:1711–1719.PubMedGoogle Scholar
  37. 37.
    Laitinen LA, Laitinen A, Haahtela T, Vilkka V, Spur BW, Lee TH (1993) Leukotriene E4 and granulocytic infiltration into asthmatic airways. Lancet 341:989–990.PubMedCrossRefGoogle Scholar
  38. 38.
    Diamant Z, Hiltermann JT, Van Rensen EL, Callenbach PM, Veselic-Charvat M, Van der Veen H, Sont JK, Sterk PJ (1997) The effect of inhaled leukotriene D4 and methacholine on sputum cell differentials in asthma. Am J Respir Crit Care Med 155:1247–1253.PubMedGoogle Scholar
  39. 39.
    Spada CS, Nieves AL, Krauss AH, Woodward DF (1994) Comparison of leukotriene B4 and D4 effects on human eosinophil and neutrophil motility in vitro. J Leukoc Biol 55:183–191.PubMedGoogle Scholar
  40. 40.
    Sehmi R, Wardlaw AJ, Cromwell O, Kurihara K, Waltmann P, Kay AB (1992) Interleukin-5 selectively enhances the chemotactic response of eosinophils obtained from normal but not eosinophilic subjects. Blood 79:2952–2959.PubMedGoogle Scholar
  41. 41.
    Lee E, Robertson T, Smith J, Kilfeather S (2000) Leukotriene receptor antagonists and synthesis inhibitors reverse survival in eosinophils of asthmatic individuals. Am J Respir Crit Care Med 161:1881–1886.PubMedGoogle Scholar
  42. 42.
    Braccioni F, Dorman SC, O'Byrne PM, Inman MD, Denburg JA, Parameswaran K, Baatjes AJ, Foley R, Gauvreau GM (2002) The effect of cysteinyl leukotrienes on growth of eosino-phil progenitors from peripheral blood and bone marrow of atopic subjects. J Allergy Clin Immunol 110:96–101.PubMedCrossRefGoogle Scholar
  43. 43.
    Fregonese L, Silvestri M, Sabatini F, Rossi GA (2002) Cysteinyl leukotrienes induce human eosinophil locomotion and adhesion molecule expression via a CysLT1 receptor-mediated mechanism. Clin Exp Allergy 32:745–750.PubMedCrossRefGoogle Scholar
  44. 44.
    Sampson AP, Pizzichini E, Bisgaard H (2003) Effects of cysteinyl leukotrienes and leukot-riene receptor antagonists on markers of inflammation. J Allergy Clin Immunol 111 (Suppl 1):S49–S59.PubMedCrossRefGoogle Scholar
  45. 45.
    Kim DC, Hsu FI, Barrett NA, Friend DS, Grenningloh R, Ho IC, Al-Garawi A, Lora JM, Lam BK, Austen KF, Kanaoka Y (2006) Cysteinyl leukotrienes regulate Th2 cell-dependent pulmonary inflammation. J Immunol 176:4440–4448.PubMedGoogle Scholar
  46. 46.
    Tohda Y, Nakahara H, Kubo H, Haraguchi R, Fukuoka M, Nakajima S (1999) Effects of ONO-1078 (pranlukast) on cytokine production in peripheral blood mononuclear cells of patients with bronchial asthma. Clin Exp Allergy 29:1532–1536.PubMedCrossRefGoogle Scholar
  47. 47.
    Bisgaard H, Loland L, Oj JA (1999) NO in exhaled air of asthmatic children is reduced by the leukotriene receptor antagonist montelukast. Am J Respir Crit Care Med 160:1227–1231.PubMedGoogle Scholar
  48. 48.
    Razi C, Bakirtas A, Harmanci K, Turktas I, Erbas D (2006) Effect of montelukast on symptoms and exhaled nitric oxide levels in 7- to 14-year-old children with seasonal allergic rhinitis. Ann Allergy Asthma Immunol 97:767–774.PubMedCrossRefGoogle Scholar
  49. 49.
    Coles SJ, Neill KH, Reid LM, Austen KF, Nii Y, Corey EJ, Lewis RA (1983) Effects of leu-kotrienes C 4 and D4 on glycoprotein and lysozyme secretion by human bronchial mucosa. Prostaglandins 25:155–170.PubMedCrossRefGoogle Scholar
  50. 50.
    Bisgaard H, Pedersen M (1987) SRS-A leukotrienes decrease the activity of human respiratory cilia. Clin Allergy 17:95–103.PubMedCrossRefGoogle Scholar
  51. 51.
    Mygind N, Dahl R, Bisgaard H (2000) Leukotrienes, leukotriene receptor antagonists, and rhinitis. Allergy 55:421–424.PubMedCrossRefGoogle Scholar
  52. 52.
    Holgate ST, Peters-Golden M, Panettieri RA, Henderson WR (2003) Roles of cysteinyl leu-kotrienes in airway inflammation, smooth muscle function, and remodeling. J Allergy Clin Immunol 111 (Suppl 1):S18–S34.PubMedCrossRefGoogle Scholar
  53. 53.
    Wang CG, Du T, Xu LJ, and Martin JG (1993) Role of leukotriene D4 in allergen-induced increases in airway smooth muscle in the rat. Am Rev Respir Dis 148:413–417.PubMedGoogle Scholar
  54. 54.
    Panettieri RA, Tan EML, Ciocca V, Luttmann MA, Leonard TB, Hay DWP (1998) Effects of LTD4 on human airway smooth muscle cell proliferation, matrix expression, and contraction in vitro: differential sensitivity to cysteinyl leukotriene receptor antagonists. Am J Respir Cell Mol Biol 19:453–461.PubMedGoogle Scholar
  55. 55.
    Cohen P, Noveral JP, Bhala A, Nunn SE, Herrick DJ, Grunstein MM (1995) Leukotriene D4 facilitates airway smooth muscle cell proliferation via modulation of the IGF axis. Am J Physiol 269:L151–L157.PubMedGoogle Scholar
  56. 56.
    Yoshisue H, Kirkham-Brown J, Healy E, Holgate ST, Sampson AP, Davies DE (2007) Cysteinyl leukotrienes synergize with growth factors to induce proliferation of human bronchial fibroblasts. J Allergy Clin Immunol 119:132–140.PubMedCrossRefGoogle Scholar
  57. 57.
    Medina L, Perez Ramos J, Ramirez R, Selman M, Pardo A (1994) Leukotriene C4 upregulates collagenase expression and synthesis in human lung fibroblasts. Biochim Biophys Acta 1224:168–174.PubMedCrossRefGoogle Scholar
  58. 58.
    Leikauf GD, Claesson HE, Doupnik CA, Hybbinette S, Grafstrom RC (1990) Cysteinyl leukotrienes enhance growth of human airway epithelial cells. Am J Physiol 259:L255–L261.PubMedGoogle Scholar
  59. 59.
    Henderson WR, Tang LO, Chu SJ, Tsao SM, Chiang GK, Jones F, Jonas M, Pae C, Wang H, Chi EY (2002) A role for cysteinyl leukotrienes in airway remodeling in a mouse asthma model. Am J Respir Crit Care Med 165:108–116.PubMedGoogle Scholar
  60. 60.
    Henderson WR, Chiang GK, Tien YT, Chi EY (2006) Reversal of allergen-induced airway remodeling by CysLT1 receptor blockade. Am J Respir Crit Care Med 173:718–728.PubMedCrossRefGoogle Scholar
  61. 61.
    Beller TC, Maekawa A, Friend DS, Austen KF, Kanaoka Y (2004) Targeted gene disruption reveals the role of the cysteinyl leukotriene 2 receptor in increased vascular permeability and in bleomycin-induced pulmonary fibrosis in mice. J Biol Chem 279:46129–46134.PubMedCrossRefGoogle Scholar
  62. 62.
    Westcott JY (1999) The measurement of leukotrienes in human fluids. Clin Rev Allergy Immunol 17:153–177.PubMedCrossRefGoogle Scholar
  63. 63.
    Taylor GW, Taylor IK, Black PN, Maltby N, Fuller RW, Dollery CT (1989) Urinary leukotriene E4 after allergen challenge and in acute asthma and allergic rhinitis. Lancet 1:584–588.PubMedCrossRefGoogle Scholar
  64. 64.
    Green SA, Malice MP, Tanaka W, Tozzi CA, Reiss TF (2004) Increase in urinary leukotriene LTE4 levels in acute asthma: correlation with airflow limitation. Thorax 59:100–104.PubMedCrossRefGoogle Scholar
  65. 65.
    Wenzel SE, Larsen GL, Johnston K, Voelkel NF, Westcott JY (1990) Elevated levels of leu-kotriene C4 in bronchoalveolar lavage fluid from atopic asthmatics after endobronchial allergen challenge. Am Rev Respir Dis 142:112–119.PubMedGoogle Scholar
  66. 66.
    O'Sullivan S, Roquet A, Dahlen B, Dahlen S, Kumlin M (1998) Urinary excretion of inflammatory mediators during allergen-induced early and late phase asthmatic reactions. Clin Exp Allergy 28:1332–1339.PubMedCrossRefGoogle Scholar
  67. 67.
    Szczeklik A, Sladek K, Dworski R, Nizankowska E, Soja J, Sheller J, Oates J (1996) Bronchial aspirin challenge causes specific eicosanoid response in aspirin-sensitive asthmatics. Am J Respir Crit Care Med 154:1608–1614.PubMedGoogle Scholar
  68. 68.
    Sanak M, Kielbasa B, Bochenek G, Szczeklik A (2004) Exhaled eicosanoids following oral aspirin challenge in asthmatic patients. Clin Exp Allergy 34:1899–1904.PubMedCrossRefGoogle Scholar
  69. 69.
    Creticos PS, Peters SP, Adkinson NFJ, Naclerio RM, Hayes EC, Norman PS, Lichtenstein LM (1984) Peptide leukotriene release after antigen challenge in patients sensitive to ragweed. N Engl J Med 310:1626–1630.PubMedGoogle Scholar
  70. 70.
    Miadonna A, Tedeschi A, Leggieri E, Lorini M, Folco G, Sala A, Qualizza R, Froldi M, Zanussi C (1987) Behavior and clinical relevance of histamine and leukotrienes C4 and B4 in grass pollen-induced rhinitis. Am Rev Respir Dis 136:357–362.PubMedGoogle Scholar
  71. 71.
    Volovitz B, Osur SL, Bernstein JM, Ogra PL (1988a) Leukotriene C4 release in upper respiratory mucosa during natural exposure to ragweed in ragweed-sensitive children. J Allergy Clin Immunol 82:414–418.Google Scholar
  72. 72.
    Higashi N, Taniguchi M, Mita H, Ishii T, Akiyama K (2003) Nasal blockage and urinary LTE4 concentration in patients with seasonal allergic rhinitis. Allergy 58:476–480.PubMedCrossRefGoogle Scholar
  73. 73.
    Volovitz B, Welliver RC, De-Castro G, Krystofik DA, Ogra PL (1988b) The release of leukot-rienes in the respiratory tract during infection with respiratory syncytial virus: role in obstructive airway disease. Pediatr Res 24:504–507.CrossRefGoogle Scholar
  74. 74.
    Smith LJ, Geller S, Ebright L, Glass M, Thyrum PT (1990) Inhibition of leukotriene D4-induced bronchoconstriction in normal subjects by the oral LTD4 receptor antagonist ICI 204,219. Am Rev Respir Dis 141:988–992.PubMedGoogle Scholar
  75. 75.
    Cheng JB (1992) Early efficacy data with a newer generation of LTD4 antagonists in anti-asthma trials: early promise for a single mediator antagonist. Pulmon Pharmacol 5:77–80.CrossRefGoogle Scholar
  76. 76.
    De Lepeleire I, Reiss TF, Rochette F, Botto A, Zhang J, Kundu S, Decramer M (1997) Montelukast causes prolonged, potent leukotriene D4 -receptor antagonism in the airways of patients with asthma. Clin Pharmacol Ther 61:83–6192.PubMedCrossRefGoogle Scholar
  77. 77.
    Taylor IK, O'Shaughnessy KM, Fuller RW, Dollery CT (1991) Effect of cysteinyl-leukotriene receptor antagonist ICI 204,219 on allergen-induced bronchoconstriction and airway hyperreactivity in atopic subjects. Lancet 337:690–694.PubMedCrossRefGoogle Scholar
  78. 78.
    Findlay SR, Barden JM, Easley CB, Glass M (1992) Effect of the oral leukotriene antagonist, ICI 204,219, on antigen-induced bronchoconstriction in subjects with asthma. J Allergy Clin Immunol 89:1040–1045.PubMedCrossRefGoogle Scholar
  79. 79.
    Roquet A, Dahlen B, Kumlin M, Ihre E, Anstren G, Binks S, Dahlen SE (1997) Combined antagonism of leukotrienes and histamine produces predominant inhibition of allergen-induced early and late phase airway obstruction in asthmatics. Am J Respir Crit Care Med 155:1856–1863.PubMedGoogle Scholar
  80. 80.
    Diamant Z, Grootendorst DC, Veselic-Charvat M, Timmers MC, De Smet M, Leff JA, Seidenberg BA, Zwinderman AH, Peszek I, Sterk PJ (1999) The effect of montelukast (MK-0476), a cysteinyl leukotriene receptor antagonist, on allergen-induced airway responses and sputum cell counts in asthma. Clin Exp Allergy 29:42–51.PubMedCrossRefGoogle Scholar
  81. 81.
    Finnerty JP, Wood-Baker R, Thomson H, Holgate ST (1992) Role of leukotrienes in exercise-induced asthma: inhibitory effect of ICI 204219, a potent leukotriene D4 receptor antagonist. Am Rev Respir Dis 145:746–749.PubMedGoogle Scholar
  82. 82.
    Leff JA, Busse WW, Pearlman D, Bronsky EA, Kemp J, Hendeles L, Dockhorn R, Kundu S, Zhang J, Seidenberg BC, Reiss TF (1998) Montelukast, a leukotriene-receptor antagonist, for the treatment of mild asthma and exercise-induced bronchoconstriction. N Engl J Med 339:147–152.PubMedCrossRefGoogle Scholar
  83. 83.
    Kemp JP, Dockhorn RJ, Shapiro GG, Nguyen HH, Reiss TF, Seidenberg BC, Knorr B (1998) Montelukast once daily inhibits exercise-induced bronchoconstriction in 6- to 14-year-old children with asthma. J Pediatr 133:424–428.PubMedCrossRefGoogle Scholar
  84. 84.
    Bisgaard H, Nielsen KG (2000) Bronchoprotection with a leukotriene receptor antagonist in asthmatic preschool children. Am J Respir Crit Care Med 162:187–190.PubMedGoogle Scholar
  85. 85.
    Edelman JM, Turpin JA, Bronsky EA, Grossman J, Kemp JP, Ghannam AF, DeLucca PT, Gormley GJ, Pearlman DS (2000) Oral montelukast compared with inhaled salmeterol to prevent exercise-induced bronchoconstriction: a randomized, double-blind trial. Exercise Study Group. Ann Intern Med 132:97–104.PubMedGoogle Scholar
  86. 86.
    Kumlin M, Dahlen B, Bjorck T, Zetterstrom O, Granstrom E, Dahlen SE (1992) Urinary excretion of leukotriene E4 and 11-dehydro-thromboxane B2 in response to bronchial provocations with allergen, aspirin, leukotriene D4, and histamine in asthmatics. Am Rev Respir Dis 146:96–103.PubMedGoogle Scholar
  87. 87.
    Sestini P, Armetti L, Gambaro G, Pieroni MG, Refini RF, Sala A, Vaghi A, Folco GC, Bianco S, Robuschi M (1996) Inhaled PGE2 prevents aspirin-induced bronchoconstriction and urinary LTE4 excretion in aspirin-sensitive asthma. Am J Respir Crit Care Med 153:572–575.PubMedGoogle Scholar
  88. 88.
    Cowburn AS, Sladek K, Soja J, Adamek L, Nizankowska E, Szczeklik A, Lam BK, Penrose JF, Austen KF, Holgate ST, Sampson AP (1998) Overexpression of LTC4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J Clin Invest 101:834–846.PubMedCrossRefGoogle Scholar
  89. 89.
    Adamjee J, Suh YJ, Park HS, Choi JH, Penrose JF, Lam BK, Austen KF, Cazaly AM, Wilson SJ, Sampson AP (2006) Expression of 5-lipoxygenase and cyclooxygenase pathway enzymes in nasal polyps of patients with aspirin-intolerant asthma. J Pathol 209:392–399.PubMedCrossRefGoogle Scholar
  90. 90.
    Fischer AR, Rosenberg MA, Lilly CM, Callery JC, Rubin P, Cohn J, White MV, Igarashi Y, Kaliner MA, Drazen JM, Israel E (1994) Direct evidence for a role of the mast cell in the nasal response to aspirin in aspirin-sensitive asthma. J Allergy Clin.Immunol 94:1046–1056.PubMedCrossRefGoogle Scholar
  91. 91.
    Christie PE, Smith CM, Lee TH (1991) The potent and selective sulfidopeptide leukotriene antagonist, SK&F 104353, inhibits aspirin-induced asthma. Am Rev Respir Dis 144:957–958.PubMedGoogle Scholar
  92. 92.
    Stevenson DD, Simon RA, Mathison DA, Christiansen SC (2000) Montelukast is only partially effective in inhibiting aspirin responses in aspirin-sensitive asthmatics. Ann Allergy Asthma Immunol 85:477–482.PubMedCrossRefGoogle Scholar
  93. 93.
    Dahlen B, Nizankowska E, Szczeklik A, Zetterstrom O, Bochenek G, Kumlin M, Mastalerz L, Pinis G, Swanson LJ, Boodhoo TI, Wright S, Dube LM, Dahlen SE (1998) Benefits from adding the 5-lipoxygenase inhibitor zileuton to conventional therapy in aspirin-intolerant asthmatics. Am J Respir Crit Care Med 157:1187–1194.PubMedGoogle Scholar
  94. 94.
    Dahlen SE, Malmstrom K, Nizankowska E, Dahlen B, Kuna P, Kowalski M, Lumry WR, Picado C, Stevenson DD, Bousquet J, Pauwels R, Holgate ST, Shahane A, Zhang J, Reiss TF, Szczeklik A (2002) Improvement of aspirin-intolerant asthma by montelukast, a leukot-riene antagonist: a randomized, double-blind, placebo-controlled trial. Am J Respir Crit Care Med 165:9–14.PubMedGoogle Scholar
  95. 95.
    Micheletto, Tognella S, Visconti M, Pomari C, Trevisan F, Dal Negro RW (2004) Montelukast 10 mg improves nasal function and nasal response to aspirin in ASA-sensitive asthmatics: a controlled study vs placebo. Allergy 59:289–294.PubMedCrossRefGoogle Scholar
  96. 96.
    Holgate ST, Bradding P, Sampson AP (1996) Leukotriene antagonists and synthesis inhibitors: new directions in asthma therapy. J Allergy Clin Immunol 98:1–13.PubMedCrossRefGoogle Scholar
  97. 97.
    Gaddy JN, Margolskee DJ, Bush RK, Williams VC, Busse WW (1992) Bronchodilation with a potent and selective leukotriene D4 receptor antagonist (MK-571) in patients with asthma. Am Rev Respir Dis 146:358–363.PubMedGoogle Scholar
  98. 98.
    Dockhorn RJ, Baumgartner RA, Leff JA, Noonan M, Vandormael K, Stricker W, Weinland DE, Reiss TF (2000) Comparison of the effects of intravenous and oral montelukast on airway function: a double blind, placebo controlled, three period, crossover study in asthmatic patients. Thorax 55:260–265.PubMedCrossRefGoogle Scholar
  99. 99.
    Camargo CA, Smithline HA, Malice MP, Green SA, Reiss TF (2003) A randomized controlled trial of intravenous montelukast in acute asthma. Am J Respir Crit Care Med 167:528–533.PubMedCrossRefGoogle Scholar
  100. 100.
    Robertson CF, Price D, Henry R, Mellis C, Glasgow N, Fitzgerald D, Lee AJ, Turner J, Sant M (2007) Short-course montelukast for intermittent asthma in children: a randomized controlled trial. Am J Respir Crit Care Med 175:323–329.PubMedCrossRefGoogle Scholar
  101. 101.
    Suissa S, Dennis R, Ernst P, Sheehy O, Wood Dauphinee S (1997) Effectiveness of the leu-kotriene receptor antagonist zafirlukast for mild-to-moderate asthma: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 126:177–183.PubMedGoogle Scholar
  102. 102.
    Reiss TF, Chervinsky P, Dockhorn RJ, Shingo S, Seidenberg B, Edwards TB (1998) Montelukast, a once-daily leukotriene receptor antagonist, in the treatment of chronic asthma: a multicenter, randomized, double-blind trial. Montelukast Clinical Research Study Group. Arch Intern Med 158:1213–1220.PubMedCrossRefGoogle Scholar
  103. 103.
    Knorr B, Matz J, Bernstein JA, Nguyen H, Seidenberg BC, Reiss TF, Becker A (1998) Montelukast for chronic asthma in 6- to 14-year-old children: a randomized, double-blind trial. Pediatric Montelukast Study Group. JAMA 279:1181–1186.PubMedCrossRefGoogle Scholar
  104. 104.
    Lazarus SC, Lee T, Kemp JP, Wenzel S, Dube LM, Ochs RF, Carpentier PJ, Lancaster JF (1998) Safety and clinical efficacy of zileuton in patients with chronic asthma. Am J Manag Care 4:841–848.PubMedGoogle Scholar
  105. 105.
    Bisgaard H, Zielen S, Garcia-Garcia ML, Johnston SL, Gilles L, Menten J, Tozzi CA, Polos P (2005) Montelukast reduces asthma exacerbations in 2-5-year-old children with intermittent asthma. Am J Respir Crit Care Med 171:315–322.PubMedCrossRefGoogle Scholar
  106. 106.
    Peters-Golden M (2003) Do anti-leukotriene agents inhibit asthmatic inflammation?. Clin Exp Allergy 33:721–724.PubMedCrossRefGoogle Scholar
  107. 107.
    Malmstrom K, Rodriguez-Gomez G, Guerra J, Villaran C, Pineiro A, Wei LX, Seidenberg BC, Reiss TF (1999) Oral montelukast, inhaled beclomethasone, and placebo for chronic asthma: a randomized, controlled trial. Montelukast/Beclomethasone Study Group. Ann Intern Med 130:487–495.PubMedGoogle Scholar
  108. 108.
    Buchvald F, Bisgaard H (2003) Comparisons of the complementary effect on exhaled nitric oxide of salmeterol vs montelukast in asthmatic children taking regular inhaled budesonide. Ann Allergy Asthma Immunol 91:309–313.PubMedCrossRefGoogle Scholar
  109. 109.
    Kelly MM, Chakir J, Vethanayagam D, Boulet LP, Laviolette M, Gauldie J, O'Byrne PM (2006) Montelukast treatment attenuates the increase in myofibroblasts following low-dose allergen challenge. Chest 130:741–753.PubMedCrossRefGoogle Scholar
  110. 110.
    Nathan RA, Minkwitz MC, Bonuccelli CM (1999) Two first-line therapies in the treatment of mild asthma: use of peak flow variability as a predictor of effectiveness. Ann Allergy Asthma Immunol 82:497–503.PubMedCrossRefGoogle Scholar
  111. 111.
    Schwartz HJ, Petty T, Dube LM, Swanson LJ, Lancaster JF (1998) A randomized controlled trial comparing zileuton with theophylline in moderate asthma. The Zileuton Study Group. Arch Intern Med 158:141–148.PubMedCrossRefGoogle Scholar
  112. 112.
    Zeiger RS, Szefler SJ, Phillips BR, Schatz M, Martinez FD, V. M. Chinchilli VM, Lemanske RM, Strunk RC, Larsen G, Spahn JD, Bacharier LB, Bloomberg GR, Guilbert TW, Heldt G, Morgan WJ, Moss MH, Sorkness CA, Taussig LM (2006) Response profiles to fluticasone and montelukast in mild-to-moderate persistent childhood asthma. J Allergy Clin Immunol 117:45–52.PubMedCrossRefGoogle Scholar
  113. 113.
    Bleecker ER, Welch MJ, Weinstein SF, Kalberg C, Johnson M, Edwards L, Rickard KA (2000) Low-dose inhaled fluticasone propionate versus oral zafirlukast in the treatment of persistent asthma. J Allergy Clin Immunol 105:1123–1129.PubMedCrossRefGoogle Scholar
  114. 114.
    Busse W, Raphael GD, Galant S, Kalberg C, Goode-Sellers S, Srebro S, Edwards L, Rickard K (2001) Low-dose fluticasone propionate compared with montelukast for first-line treatment of persistent asthma: a randomized clinical trial. J Allergy Clin Immunol 107:461–468.PubMedCrossRefGoogle Scholar
  115. 115.
    Garcia-Garcia ML, Wahn U, Gilles L, Swern A, Tozzi CA, Polos P (2005) Montelukast, compared with fluticasone, for control of asthma among 6- to 14-year-old patients with mild asthma: the MOSAIC study. Pediatrics 116:360–369.PubMedCrossRefGoogle Scholar
  116. 116.
    Williams B, Noonan G, Reiss TF, Knorr B, Guerra J, White R, Matz J (2001) Long-term asthma control with oral montelukast and inhaled beclomethasone for adults and children 6 years and older. Clin.Exp.Allergy 31:845–854.PubMedCrossRefGoogle Scholar
  117. 117.
    Stempel, Meyer JW, Stanford RH, Yancey SW (2001) One-year claims analysis comparing inhaled fluticasone propionate with zafirlukast for the treatment of asthma. J Allergy Clin Immunol. 107:94–98.PubMedCrossRefGoogle Scholar
  118. 118.
    Szefler SJ, Phillips BR, Martinez FD, Chinchilli VM, Lemanske RF, Strunk RC, Zeiger RS, Larsen G, Spahn JD, Bacharier LB, Bloomberg GR, Guilbert TW, Heldt G, Morgan WJ, Moss MH, Sorkness CA, Taussig LM (2005) Characterization of within-subject responses to fluticasone and montelukast in childhood asthma. J Allergy Clin Immunol 115:233–242.PubMedCrossRefGoogle Scholar
  119. 119.
    O'Shaughnessy KM, Wellings R, Gillies B, Fuller RW (1993) Differential effects of flutica-sone propionate on allergen-evoked bronchoconstriction and increased urinary leukotriene E4 excretion. Am Rev Respir Dis 147:1472–1476.PubMedGoogle Scholar
  120. 120.
    Dworski R, Fitzgerald GA, Oates JA, Sheller JR (1994) Effect of oral prednisone on airway inflammatory mediators in atopic asthma. Am J Respir Crit Care Med 149:953–959.PubMedGoogle Scholar
  121. 121.
    Gyllfors P, Dahlen SE, Kumlin M, Larsson K, Dahlen B (2006) Bronchial responsiveness to leukotriene D4 is resistant to inhaled fluticasone propionate. J Allergy Clin Immunol 118:78–83.PubMedCrossRefGoogle Scholar
  122. 122.
    Laviolette M, Malmstrom K, Lu S, Chervinsky P, Pujet JC, Peszek I, Zhang Z, Reiss TF (1999) Montelukast added to inhaled beclomethasone in treatment of asthma. Am J Respir Crit Care Med 160:1862–1868.PubMedGoogle Scholar
  123. 123.
    Virchow JC, Prasse A, Naya I, Summerton L, Harris A (2000) Zafirlukast improves asthma control in patients receiving high-dose inhaled corticosteroids. Am J Respir Crit Care Med 162:578–585.PubMedGoogle Scholar
  124. 124.
    Simons FE, Villa JR, Lee BW, Teper AM, Lyttle B, Aristizabal G, Laessig W, Schuster A, Perez-Frias J, Sekerel BE, Menten J, Leff JA (2001) Montelukast added to budesonide in children with persistent asthma: a randomized, double-blind, crossover study. J Pediatr 138:694–698.PubMedCrossRefGoogle Scholar
  125. 125.
    Robinson DS, Campbell D, Barnes PJ (2001) Addition of leukotriene antagonists to therapy in chronic persistent asthma: a randomised double-blind placebo-controlled trial. Lancet 357:2007–2011.PubMedCrossRefGoogle Scholar
  126. 126.
    Price DB, Hernandez D, Magyar P, Fiterman J, Beeh KM, James IG, Konstantopoulos S, Rojas R, Van Noord JA, Pons M, Gilles L, Leff JA (2003) Randomised controlled trial of montelukast plus inhaled budesonide versus double dose inhaled budesonide in adult patients with asthma. Thorax 58:211–216.PubMedCrossRefGoogle Scholar
  127. 127.
    Barnes N, Laviolette M, Allen D, Flood-Page P, Hargreave F, Corris P, Tate H, Parker D, Pavord I (2007) Effects of montelukast compared to double dose budesonide on airway inflammation and asthma control. Respir Med 101:1652–1658.PubMedCrossRefGoogle Scholar
  128. 128.
    Price DB, Swern A, Tozzi CA, Philip G, Polos P (2006) Effect of montelukast on lung function in asthma patients with allergic rhinitis: analysis from the COMPACT trial. Allergy 61:737–742.PubMedCrossRefGoogle Scholar
  129. 129.
    Tamaoki J, Kondo M, Sakai N, Nakata J, Takemura H, Nagai A, Takizawa T, Konno K (1997) Leukotriene antagonist prevents exacerbation of asthma during reduction of high-dose inhaled corticosteroid. Am J Respir Crit Care Med 155:1235–1240.PubMedGoogle Scholar
  130. 130.
    Lofdahl CG, Reiss TF, Leff JA, Israel E, Noonan MJ, Finn AF, Seidenberg BC, Capizzi T, Kundu S, Godard P (1999) Randomised, placebo controlled trial of effect of a leukotriene receptor antagonist, montelukast, on tapering inhaled corticosteroids in asthmatic patients. Br Med M 319:87–90.Google Scholar
  131. 131.
    Ducharme F, Schwartz Z, Hicks G, Kakuma R (2004) Addition of anti-leukotriene agents to inhaled corticosteroids for chronic asthma. Cochrane Database Syst Rev (2):CD003133.Google Scholar
  132. 132.
    Bjermer L, Bisgaard H, Bousquet J, Fabbri LM, Greening AP, Haahtela T, Holgate ST, Picado C, Menten J, Dass SB, Leff JA, Polos PG (2003) Montelukast and fluticasone compared with salmeterol and fluticasone in protecting against asthma exacerbation in adults: one year, double blind, randomised, comparative trial. BMJ 327:891.PubMedCrossRefGoogle Scholar
  133. 133.
    Nelson HS, Busse WW, Kerwin E, Church N, Emmett N, Rickard K, Knobil K (2000) Fluticasone propionate/salmeterol combination provides more effective asthma control than low-dose inhaled corticosteroid plus montelukast. J Allergy Clin Immunol 106:1088–1095.PubMedCrossRefGoogle Scholar
  134. 134.
    Fish JE, Israel E, Murray JJ, Emmett E, Boone R, Yancey SW, Rickard KA (2001) Salmeterol powder provides significantly better benefit than montelukast in asthmatic patients receiving concomitant inhaled corticosteroid therapy. Chest 120:423–430.PubMedCrossRefGoogle Scholar
  135. 135.
    Wilson AM, Dempsey OJ, Sims EJ, Lipworth BJ (2001a) Evaluation of salmeterol or mon-telukast as second-line therapy for asthma not controlled with inhaled corticosteroids. Chest 119:1021–1026.CrossRefGoogle Scholar
  136. 136.
    Currie GP, Lee DK, Haggart K, Bates CE, Lipworth BJ (2003) Effects of montelukast on surrogate inflammatory markers in corticosteroid-treated patients with asthma. Am J Respir Crit Care Med 167:1232–1238.PubMedCrossRefGoogle Scholar
  137. 137.
    Currie G, Lee DK, Srivastava P (2005) Long-acting bronchodilator or leukotriene modifier as add-on therapy to inhaled corticosteroids in persistent asthma? Chest 128:2954–2962.PubMedCrossRefGoogle Scholar
  138. 138.
    Donnelly AL, Glass M, Minkwitz MC, Casale TB (1995) The leukotriene D4-receptor antagonist, ICI 204,219, relieves symptoms of acute seasonal allergic rhinitis. Am J Respir Crit Care Med 151:1734–1739.PubMedGoogle Scholar
  139. 139.
    Phipatanakul W, Eggleston P, Conover-Walker M, Kesavanathan J, Sweitzer D, Wood R (2000) A randomized, double-blind, placebo-controlled trial of the effect of zafirlukast on upper and lower respiratory responses to cat challenge. J Allergy Clin Immunol 105:704–710.PubMedCrossRefGoogle Scholar
  140. 140.
    Piatti G, Ceriotti L, Cavallaro G, Ambrosetti U, Mantovani M, Pistone A, Centanni S (2003) Effects of zafirlukast on bronchial asthma and allergic rhinitis. Pharmacol Res 47:541–547.PubMedCrossRefGoogle Scholar
  141. 141.
    Patel P, Philip G, Yang W, Call R, Horak F, LaForce C, Gilles L, Garrett GC, Dass SB, Knorr BA, Reiss TF (2005) Randomized, double-blind, placebo-controlled study of montelukast for treating perennial allergic rhinitis. Ann Allergy Asthma Immunol 95:551–557.PubMedCrossRefGoogle Scholar
  142. 142.
    Wilson AM, O'Byrne PM, Parameswaran K (2004) Leukotriene receptor antagonists for allergic rhinitis: a systematic review and meta-analysis. Am J Med 116:338–344.PubMedCrossRefGoogle Scholar
  143. 143.
    Meltzer EO, Malmstrom K, Lu S, Prenner BM, Wei LX, Weinstein SF, Wolfe JD, Reiss TF (2000) Concomitant montelukast and loratadine as treatment for seasonal allergic rhinitis: a randomized, placebo-controlled clinical trial. J Allergy Clin Immunol 105:917–922.PubMedCrossRefGoogle Scholar
  144. 144.
    Nayak AS, Philip G, Lu S, Malice MP, Reiss TF (2002) Efficacy and tolerability of montelu-kast alone or in combination with loratadine in seasonal allergic rhinitis: a multicenter, randomized, double-blind, placebo-controlled trial performed in the fall. Ann Allergy Asthma Immunol 88:592–600.PubMedCrossRefGoogle Scholar
  145. 145.
    Wilson AM, Orr LC, Sims EJ, Lipworth BJ (2001) Effects of monotherapy with intra-nasal corticosteroid or combined oral histamine and leukotriene receptor antagonists in seasonal allergic rhinitis. Clin Exp Allergy 31:61–68.PubMedGoogle Scholar
  146. 146.
    Nayak A, Langdon RB (2007) Montelukast in the treatment of allergic rhinitis: an evidence-based review. Drugs 67:887–901.PubMedCrossRefGoogle Scholar
  147. 147.
    Bousquet J (2002) The new ARIA guidelines: putting science into practice. Clin Exp Allergy Rev 2:38–43.CrossRefGoogle Scholar
  148. 148.
    Garcia-Marcos L, Schuster A, Perez-Yarza E (2003) Benefit-risk assessment of antileukot-rienes in the management of asthma. Drug Saf 26:483–518.PubMedCrossRefGoogle Scholar
  149. 149.
    Barnes N, Thomas M, Price D, Tate H (2005) The national montelukast survey. J Allergy Clin Immunol 115:47–54.PubMedCrossRefGoogle Scholar
  150. 150.
    Biswas P, Wilton L, Pearce G, Freemantle S, Shakir S, Mann RD (2001) Pharmacosurveillance and safety of the leukotriene receptor antagonist (LTRA), montelukast. Clin Exp Allergy Rev 1:300–304CrossRefGoogle Scholar
  151. 151.
    Reinus JF, Persky S, Burkiewicz JS, Quan D, Bass NM, Davern TJ (2000) Severe liver injury after treatment with the leukotriene receptor antagonist zafirlukast. Ann Intern Med 133:964–968.PubMedGoogle Scholar
  152. 152.
    Price D (2000) Tolerability of montelukast. Drugs 59:35–42.PubMedCrossRefGoogle Scholar
  153. 153.
    Martin RM, Wilton LV, Mann RD (1999) Prevalence of Churg-Strauss syndrome, vasculitis, eosinophilia and associated conditions: retrospective analysis of 58 prescription-event monitoring cohort studies. Pharmacoepidemiol Drug Saf 8:179–189.PubMedCrossRefGoogle Scholar
  154. 154.
    Drazen JM, Silverman RK, Lee TH (2000) Heterogeneity of therapeutic responses in asthma. Br Med Bull 56:1054–1070.PubMedCrossRefGoogle Scholar
  155. 155.
    Drazen JM, Yandava CN, Dube L, Szczerback N, Hippensteel R, Pillari A, Israel E, Schork N, Silverman ES, Katz DA, Drajesk J (1999) Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat Genet 22:168–170.PubMedCrossRefGoogle Scholar
  156. 156.
    Sampson AP, Siddiqui S, Buchanan D, Howarth PH, Holgate ST, Holloway JW, Sayers I (2000) Variant LTC4 synthase allele modifies cysteinyl leukotriene synthesis in eosinophils and predicts clinical response to zafirlukast. Thorax 55 (Suppl 2):S28–S31.PubMedCrossRefGoogle Scholar
  157. 157.
    Asano K, Shiomi T, Hasegawa N, Nakamura H, Kudo H, Matsuzaki T, Hakuno H, Fukunaga K, Suzuki Y, Kanazawa M, Yamaguchi K (2002) Leukotriene C4 synthase gene A(-444)C polymorphism and clinical response to a CYS-LT 1 antagonist, pranlukast, in Japanese patients with moderate asthma. Pharmacogenetics 12:565–570.PubMedCrossRefGoogle Scholar
  158. 158.
    Klotsman M, York TP, Pillai SG, Vargas-Irwin C, Sharma SS, Van den Oord EJ, Anderson WH (2007) Pharmacogenetics of the 5-lipoxygenase biosynthetic pathway and variable clinical response to montelukast. Pharmacogenet Genomics 17:189–196.PubMedCrossRefGoogle Scholar
  159. 159.
    Currie GP, Lima JJ, Sylvester JE, Lee DK, Cockburn WJ, Lipworth BJ (2003) Leukotriene C4 synthase polymorphisms and responsiveness to leukotriene antagonists in asthma. Br J Clin Pharmacol 56:422–426.PubMedCrossRefGoogle Scholar
  160. 160.
    Sayers I, Barton S, Rorke S, Beghe B, Hayward B, Van Eerdewegh P, Keith T, Clough JB, Ye S, Holloway JW, Sampson AP, Holgate AP (2003) Allelic association and functional studies of promoter polymorphism in the leukotriene C4 synthase gene (LTC4S) in asthma. Thorax 58 (5):417–424.PubMedCrossRefGoogle Scholar
  161. 161.
    Eskandari HG, Unal M, Ozturk OG, Vayisoglu Y, Muslu N (2006) Leukotriene C4 synthase A-444C gene polymorphism in patients with allergic rhinitis. Otolaryngol Head Neck Surg 134:997–1000.PubMedCrossRefGoogle Scholar
  162. 162.
    Jackson CM, Lipworth B (2004) Benefit-risk assessment of long-acting beta2-agonists in asthma. Drug Saf 27:243–270.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Division of Allergy and Immunology, Department of PediatricsJaffe Food Allergy Institute, Mount Sinai School of MedicineNew YorkUSA

Personalised recommendations