Lung Function and Bronchial Challenge Testing for the Allergist

  • Klaus F. Rabe
  • Adrian Gillissen
  • Zuzana Diamant
Part of the Allergy Frontiers book series (ALLERGY, volume 4)

The respiratory function of the lung can easily be measured in a variety of circumstances, and thus distinguishing obstructive from restrictive lung diseases, quantifying the severity of functional impairment, and treatment response. In this regard, peak-flow, spirometry, but also body plethysmography are the most important techniques. Inhalation challenge tests are performed to measure the response of the airways to substances that may be causing asthma or wheezing. Non-invasive airway sampling may further enhance our understanding of the underlying inflammatory processes in the airways causing pathological changes in lung function, whereas measurements of exhaled nitrogen and biomarkesr in exhaled breath condensate are from particular interest. All of these will be facets of this chapter.


Allergy Clin Immunol Respir Crit Functional Residual Capacity Total Lung Capacity Exhale Breath Condensate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    White P. Spirometry and peak expiratory flow in the primary care management of COPD. Prim Care Respir J 2004; 13:5–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CPM, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J. Standardisation of spirometry. Eur Respir J 2005; 26:319–338.PubMedCrossRefGoogle Scholar
  3. 3.
    Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, Coates A, van der Grinten CPM, Gustafsson P, Hankinson J, Jensen R, Johnson DC, MacIntyre N, McKay R, Miller MR, Navajas D, Pedersen OF, Wanger J. Interpretative strategies for lung function testing. Eur Respir J 2005; 26:948–968.PubMedCrossRefGoogle Scholar
  4. 4.
    MacIntyre N, Crapo RO, Viegi G, Johnson DC, van der Grinten CPM, Brusasco V, Burgos F, Casaburi R, Coates A, Enright P, Gustafsson P, Hankinson J, Jensen R, McKay R, Miller MR, Navajas D, Pedersen OF, Pellegrino R, Wanger J. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J 2005; 26:720–735.PubMedCrossRefGoogle Scholar
  5. 5.
    Quanjer PhH, Lebowitz MD, Gregg I, Miller MR, Pederson OF. Peak expiratory flow: conclusions and recommendations of a Working Party of the European Respiratory Society. Eur Respir J 1997; 24:2S–8S.Google Scholar
  6. 6.
    Gibson PG, Powell H. Written actin plans for asthma: an evidence-based review of the key components. Thorax 2004; 59:94–99.PubMedCrossRefGoogle Scholar
  7. 7.
    Reddel HK, Marks GB, Jenkins C. When can personal best peak flow be determined for asthma action plans? Thorax 2004; 59:922–924.PubMedCrossRefGoogle Scholar
  8. 8.
    National Institutes of Health. Global strategy for asthma management and prevention NHLBI/ WHO Workshop report. US Department of Health and Human Services, Bethesda, MD, 2006.Google Scholar
  9. 9.
    Miller MR, Dickinson SA, Hitchings DJ. The accuracy of portable peak flow meters. Thorax 1992; 47:904–909.PubMedCrossRefGoogle Scholar
  10. 10.
    Miller MR, Quanjer PhH. Peak-flow meters: a problem of scale. Br Med J 1994; 308:548–549.Google Scholar
  11. 11.
    Crapo RO. Pulmonary-function testing. N Engl J Med 1994; 331:25–30.PubMedCrossRefGoogle Scholar
  12. 12.
    Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, Casaburi R, Crapo R, Enright P, van der Grinten CPM, Gustafsson P, Hankinson J, Jensen R, Johnson D, MacIntyre N, McKay R, Miller MR, Navajas D, Pellegrino R, Viegi G. Standardisation of the measurement of lung volumes. Eur Respir J 2005; 26:511–522.PubMedCrossRefGoogle Scholar
  13. 13.
    Kreider ME, Grippi MA. Impact of the new ATS/ERS pulmonary function test interpretation guidelines. Respir Med 2004; 101:2336–2342.CrossRefGoogle Scholar
  14. 14.
    Quanjer PhH. Standardized lung function testing. Report working party “standardization of lung function tests,” European community for coal and steel, Luxembourg. Bull Eur Physiopathol Respir 1983; 19:27–36.PubMedGoogle Scholar
  15. 15.
    Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Weel C, Zielinski J. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. GOLD executive summary. Am J Respir Crit Care Med 2007; 176:532–555.PubMedCrossRefGoogle Scholar
  16. 16.
    Cerveri I, Pellegrino R, Dore R, Corsico A, Fulgoni P, van de Woestijne KP, Brusasco V. Mechanisms for isolated volume response to a bronchodilator in patients with COPD. J Appl Physiol 2000; 88:1989–1995.PubMedGoogle Scholar
  17. 17.
    Pellegrino R, Rodarte JR, Brusasco V. Assessing the reversibility of airway obstruction. Chest 1998; 114:1607–1612.PubMedCrossRefGoogle Scholar
  18. 18.
    Coates AL, Peslin R, Rodenstein D, Stocks J. Measurement of lung volumes by plethysmog-raphy. Eur Respir J 1997; 10:1415–1427.PubMedCrossRefGoogle Scholar
  19. 19.
    DuBois AB, Botelho SY, Bedell GN, Marshall R, Comroe JH. A rapid plethysmographic method for measuring thoracic gas volume: a comparison with a nitrogen washout method for measuring functional residual capacity in normal subjects. J Clin Invest 1956; 35:322–326.PubMedCrossRefGoogle Scholar
  20. 20.
    Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows. Report Working Party, Standardization of Lung Function Tests, European Community for Steel and Coal and European Respiratory Society. Eur Respir J 1993; 6(Suppl. 16):5–40.Google Scholar
  21. 21.
    American Thoracic Society, Standardization of spirometry 1994 update. Am J Respir Crit Care Med 1995; 152:1107–1136.Google Scholar
  22. 22.
    Shore SA, Huk O, Mannix S, Martin JG. Effect of panting frequency on the plethysmographic determination of thoracic gas volume in chronic obstructive pulmonary disease. Am Rev Respir Dis 1983; 128:54–59.PubMedGoogle Scholar
  23. 23.
    Rodenstein DO, Stanescu DC. Frequency dependence of plethysmographic volume in healthy and asthmatic subjects. J Appl Physiol 1983; 54:159–165.PubMedGoogle Scholar
  24. 24.
    Zarins LP, Clausen JC. Body plethysmography. In: Clausen JL, ed. Pulmonary function testing guidelines and controversies. Equipment, methods, and normal values. Academic, New York, 1982; pp. 141–153.Google Scholar
  25. 25.
    Miller MR, Crapo R, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Enright P, van der Grinten CPM, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J. General considerations for lung function testing. Eur Respir J 2005; 26:153–162.PubMedCrossRefGoogle Scholar
  26. 26.
    Degroodt EG, Quanjer PH, Wise ME, Van Zomeren BC. Changing relationships between stature and lung volumes during puberty. Respir Physiol 1986; 65:139–153.PubMedCrossRefGoogle Scholar
  27. 27.
    Borsboom GJ, Van Pelt W, Quanjer PH. Pubertal growth curves of ventilatory function: relationship with childhood respiratory symptoms. Am Rev Respir Dis 1993; 147:372–378.PubMedGoogle Scholar
  28. 28.
    Cockcroft DW, Davis BE. Mechanisms of airway hyperresponsiveness. J Allergy Clin Immunol 2006 Sept; 118(3):551–559.CrossRefGoogle Scholar
  29. 29.
    Diamant Z, Boot JD, Kamerling I, Bjermer L. Methods used in clinical development of novel anti-asthma therapies. Respir Med 2007 Nov 29 [Epub ahead of print].Google Scholar
  30. 30.
    Sterk PJ, Fabbri LM, Quanjer Ph, et al. Airway responsiveness. Standardized challenge testing with pharmacological, physical and sensitizing stimuli in adults. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J 1993 Mar; Suppl 16:53–83.Google Scholar
  31. 31.
    Van Schoor J, Joos GF, Pauwels RA. Indirect bronchial hyperresponsiveness in asthma: mechanisms, pharmacology and implications for clinical research. Eur Respir J 2000; 16:514–533.PubMedCrossRefGoogle Scholar
  32. 32.
    Boot JD, Panzner P, Diamant Z. A critical appraisal of methods used in early clinical development of novel drugs for the treatment of asthma. Pulm Pharmacol Ther 2007; 20(3):201–219.PubMedCrossRefGoogle Scholar
  33. 33.
    Joos GF, O'Connor B, Anderson SD, Chung F, Cockcroft DW, Dahlén B, et al. Indirect airway challenges. Eur Respir J 2003; 21(6):1050–1068.PubMedCrossRefGoogle Scholar
  34. 34.
    Djukanovic R, Sterk PJ, Fahy JC, Hargreave FE. Standardised methodology of sputum induction and processing. Eur Respir J 2002 Sept; Suppl 37:1s–55s.CrossRefGoogle Scholar
  35. 35.
    Brannan JD, Koskela H, Anderson SD, Chew N. Responsiveness to mannitol in asthmatic subjects with exercise- and hyperventilation-induced asthma. Am J Respir Crit Care Med 1998; 158(4):1120–1126.PubMedGoogle Scholar
  36. 36.
    Makker HK, Holgate ST. Relation of the hypertonic saline responsiveness of the airways to exercise induced asthma symptom severity and to histamine or methacholine reactivity. Thorax 1993 Feb; 48(2):142–147.CrossRefGoogle Scholar
  37. 37.
    Brannan JD, Koskela H, Anderson SD. Monitoring asthma therapy using indirect bronchial provocation tests. Clin Respir J 2007; 1:3–15.CrossRefPubMedGoogle Scholar
  38. 38.
    Holgate ST, Bousquet J, Chung KF, Bisgaard H, Pauwels R, et al. (2004). Summary of recommendations for the design of clinical trials and the registration of drugs used in the treatment of asthma. Respir Med 2004 June;98(6):479–487. Review.CrossRefGoogle Scholar
  39. 39.
    Boot JD, Panzner P, Diamant Z. A critical appraisal of methods used in early clinical development of novel drugs for the treatment of asthma. Pulm Pharmacol Ther 2007; 20(3):201–219.PubMedCrossRefGoogle Scholar
  40. 40.
    Sundy JS, Wood WA, Watt JL, Kline JN, Schwartz DA. Safety of incremental inhaled lipopolysaccharide challenge in humans. J Endotoxin Res 2006; 12(2):113–119.PubMedGoogle Scholar
  41. 41.
    Holz O, Tal-Singer R, Kanniess F, et al. Validation of the human ozone challenge model as a tool for assessing anti-inflammatory drugs in early development. J Clin Pharmacol 2005; 45(5):498–503.PubMedCrossRefGoogle Scholar
  42. 42.
    Grunberg K, Sterk PJ. Rhinovirus infections: induction and modulation of airways inflammation in asthma. Clin Exp Allergy 1999; 29(Suppl 2):65–73.PubMedGoogle Scholar
  43. 43.
    Nizankowska E, Bestynska-Krypel A, Cmiel A, Szczeklik A. Oral and bronchial provocation tests with aspirin for diagnosis of aspirin-induced asthma. Eur Respir J 2000; 15(5):863–869.PubMedCrossRefGoogle Scholar
  44. 44.
    Boulet L-P, Gauvreau G, Boulay M-E, O'Byrne P, Cockcroft DW. The allergen broncho-provocation model: an important tool for the investigation of new asthma anti-inflammatory therapies. Allergy 2007; 62:1101–1110.PubMedCrossRefGoogle Scholar
  45. 45.
    Gibson PG, Wong BJO, Hepperle MJE, et al. A research method to induce and examine a mild exacerbation of asthma by withdrawal of inhaled corticosteroid. Clin Exp Allergy 1992; 22(5):525–532.PubMedCrossRefGoogle Scholar
  46. 46.
    Daxun Z, Rafferty P, Richards R, Summerell S, Holgate ST. Airway refractoriness to adenosine 5'-monophosphate after repeated inhalation. J Allergy Clin Immunol 1989 Jan; 83(1):152–158.CrossRefGoogle Scholar
  47. 47.
    Doyle WJ, Skoner DP, Seroky JT, Fireman P. Reproducibility of the effects of intranasal ragweed challenges in allergic subjects. Ann Allergy Asthma Immunol 1995; 74(2):171–176.PubMedGoogle Scholar
  48. 48.
    Litvyakova LI, Baraniuk JN. Nasal provocation testing: a review. Ann Allergy Asthma Immunol 2001; 86(4):355–364.PubMedCrossRefGoogle Scholar
  49. 49.
    De Graaf-in't Veld C, Garrelds IM, van Toorenenbergen AW, et al. Effect of intranasal fluticasone proprionate on the immediate and late allergic reaction and nasal hyperreactivity in patients with a house dust mite allergy. Clin Exp Allergy 1995; 25(10):966–973.PubMedCrossRefGoogle Scholar
  50. 50.
    Lebel B, Bousquet J, Morel A, Chanal I, Godard P, Michel FB. Correlation between symptoms and the threshold for release of mediators in nasal secretions during nasal challenge with grass-pollen grains. J Allergy Clin Immunol 1988; 82:869–877.PubMedCrossRefGoogle Scholar
  51. 51.
    Malm L, Gerth van Wijk R, Bachert C. Guidelines for nasal provocations with aspects on nasal patency, airflow, and airflow resistance. International Committee on Objective Assessment of the Nasal Airways, International Rhinologic Society. Rhinology 2000; 38:1–6.PubMedGoogle Scholar
  52. 52.
    Godthelp T, Holm AF, Fokkens WJ, Doornenbal P, Mulder PG, Hoefsmit EC, et al. Dynamics of nasal eosinophils in response to a nonnatural allergen challenge in patients with allergic rhinitis and control subjects: a biopsy and brush study. J Allergy Clin Immunol 1996; 97(3):800–811.PubMedCrossRefGoogle Scholar
  53. 53.
    Jacobson MR, Juliusson S, Lowhagen O, Balder B, Kay AB, Durham SR. Effect of topical corticosteroids on seasonal increases in epithelial eosinophils and mast cells in allergic rhinitis: a comparison of nasal brush and biopsy methods. Clin Exp Allergy 1999; 29(10):1347–1355.PubMedCrossRefGoogle Scholar
  54. 54.
    Graaf-in't VC, Garrelds IM, van Toorenenbergen AW, Gerth van Wijk R. Nasal responsiveness to allergen and histamine in patients with perennial rhinitis with and without a late phase response. Thorax 1997; 52(2):143–148.CrossRefGoogle Scholar
  55. 55.
    Struben VM, Wieringa MH, Feenstra L, de Jongste JC. Nasal nitric oxide and nasal allergy. Allergy 2006; 61(6):665–670.PubMedCrossRefGoogle Scholar
  56. 56.
    Braunstahl GJ, Overbeek SE, Kleinjan A, Prins JB, Hoogsteden HC, Fokkens WJ. Nasal allergen provocation induces adhesion molecule expression and tissue eosinophilia in upper and lower airways. J Allergy Clin Immunol 2001; 107(3):469–476.PubMedCrossRefGoogle Scholar
  57. 57.
    Corren J, Adinoff AD, Irvin CG. Changes in bronchial responsiveness following nasal provocation with allergen. J Allergy Clin Immunol 1992; 89(2):611–618.PubMedCrossRefGoogle Scholar
  58. 58.
    Braunstahl GJ, Kleinjan A, Overbeek SE, Prins JB, Hoogsteden HC, Fokkens WJ Segmental bronchial provocation induces nasal inflammation in allergic rhinitis patients. Am J Respir Crit Care Med 2000; 161(6):2051–2057.PubMedGoogle Scholar
  59. 59.
    Makker HK, Montefort S, Holgate ST. Investigative use of fibreoptic bronchoscopy for local airway challenge in asthma. Eur Respir J 1993; 6(9):1402–1408.PubMedGoogle Scholar
  60. 60.
    Julius P, Lommatzsch M, Kuepper M, Bratke K, Faendrich S, Luttmann W, Virchow JC. Safety of segmental allergen challenge in human allergic asthma. J Allergy Clin Immunol 2007 Oct 26 [Epub ahead of print].Google Scholar
  61. 61.
    Inman MD, Watson R, Cockcroft DW, Wong BJ, Hargreave FE, O'Byrne PM. Reproducibility of allergen-induced early and late asthmatic responses. J Allergy Clin Immunol 1995; 95(6):1191–1195.PubMedCrossRefGoogle Scholar
  62. 62.
    Enright PL, Lebowitz MD, Cockroft DW. Physiologic measures: pulmonary function tests. Asthma outcome. Am J Respir Crit Care Med 1994; 149(2 Pt 2):S9–S18.PubMedGoogle Scholar
  63. 63.
    Ravensberg AJ, van Rensen EL. Grootendorst DC, De Kluijver J, Diamant Z, Ricciardolo FL, Sterk PJ. Validated safety predictions of airway responses to house dust mite in asthma. Clin Exp Allergy 2007; 37(1):100–107.PubMedCrossRefGoogle Scholar
  64. 64.
    Pawankar R, Yamagishi S, Takizawa R, Yagi T. Mast cell-IgE-and mast cell-structural cell interactions in allergic airway disease. Curr Drug Targets Inflamm Allergy 2003; 2(4):303–312.PubMedCrossRefGoogle Scholar
  65. 65.
    Pearlman DS. Pathophysiology of the inflammatory response. J Allergy Clin Immunol 1999; 104(4 Pt 1):S132–137.PubMedCrossRefGoogle Scholar
  66. 66.
    Boot JD, De Haas S, Tarasevych S, Roy C, Wang L, Amin D, Cohen J, Sterk PJ, Miller B, Paccaly A, Burggraaf J, Cohen AF, Diamant Z. Effect of an NK1/NK2 receptor antagonist on airway responses and inflammation to allergen in asthma. Am J Respir Crit Care Med 2007; 175(5):450–457.PubMedCrossRefGoogle Scholar
  67. 67.
    Gauvreau GM, Watson RM, Rerecich TJ, Baswick E, Inman MD, O'Byrne PM. Repeatability of allergen-induced airway inflammation. J Allergy Clin Immunol 1999; 104(1):66–71.PubMedCrossRefGoogle Scholar
  68. 68.
    Szczeklik A, Sanak M. The broken balance in aspirin hypersensitivity. Eur J Pharmacol 2006; 533:145–155.PubMedCrossRefGoogle Scholar
  69. 69.
    Nasser S, Christie PE, Pfister R, et al. Effect of endobronchial aspirin challenge on inflammatory cells in bronchial biopsy samples from aspirin-sensitive asthmatic subjects. Thorax 1996; 51(1):64–70.PubMedCrossRefGoogle Scholar
  70. 70.
    Currie GC, McLaughlin K. The expanding role of leukotriene receptor antagonists in chronic asthma. Ann Allergy Asthma Immunol 2006; 97(6):731–741.PubMedCrossRefGoogle Scholar
  71. 71.
    Rosi E, Ronchi MC, Grazzini M, Duranti R, Scano G. Sputum analysis, bronchial hyper-responsiveness, and airway function in asthma: results of a factor analysis. J Allergy Clin Immunol 1999; 103(2 Pt 1):232–237.PubMedCrossRefGoogle Scholar
  72. 72.
    Ricciardolo FL, Sterk PJ, Gaston B, Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol Rev 2004; 84(3):731–765. Review.PubMedCrossRefGoogle Scholar
  73. 73.
    Jatakanon A, Lim S, Kharitonov SA, Chung KF, Barnes PJ. Correlation between exhaled nitric oxide, sputum eosinophils, and methacholine responsiveness in patients with mild asthma. Thorax 1998; 53(2):91–95.PubMedCrossRefGoogle Scholar
  74. 74.
    Lim S, Jatakanon A, Meah S, Oates T, Chung KF, Barnes PJ. Relationship between exhaled nitric oxide and mucosal eosinophilic inflammation in mild to moderately severe asthma. Thorax 2000; 55(3):184–188.PubMedCrossRefGoogle Scholar
  75. 75.
    Berry MA, Shaw DE, Green RH, Brightling CE, Wardlaw AJ, Pavord ID. The use of exhaled nitric oxide concentration to identify eosinophilic airway inflammation: an observational study in adults with asthma. Clin Exp Allergy 2005; 35:1175–1179.PubMedCrossRefGoogle Scholar
  76. 76.
    Smith AD, Cowan JO, Brassett KP, Herbison GP, Taylor DR. Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. N Engl J Med 2005; 352(21):2163–2173.PubMedCrossRefGoogle Scholar
  77. 77.
    Silkoff PE, McClean P, Spino M, et al. Dose-response relationship and reproducibility of the fall in exhaled nitric oxide after inhaled beclomethasone dipropionate therapy in asthma patients. Chest 2001; 119(5):1322–1328.PubMedCrossRefGoogle Scholar
  78. 78.
    Bisgaard H, Loland L, Oj JA. NO in exhaled air of asthmatic children is reduced by the leuko-triene receptor antagonist montelukast. Am J Respir Crit Care Med 1999; 160(4):1227–1231.PubMedGoogle Scholar
  79. 79.
    Silkoff PE, Romero FA, Gupta N, Townley RG, Milgrom H. Exhaled nitric oxide in children with asthma receiving Xolair (omalizumab), a monoclonal anti-immunoglobulin E antibody. Pediatrics 2004; 113(4):e308–312.PubMedCrossRefGoogle Scholar
  80. 80.
    Pijnenburg MW, De Jongste JC. Exhaled nitric oxide in childhood asthma: a review. Clin Exp Allergy 2007 Dec 11 [Epub ahead of print].Google Scholar
  81. 81.
    Jatakanon A, Lim S, Barnes PJ. Changes in sputum eosinophils predict loss of asthma control. Am J Respir Crit Care Med 2000; 161(1):64–72.PubMedGoogle Scholar
  82. 82.
    Jones SL, Kittelson J, Cowan JO, Flannery EM, Hancox RJ, McLachlan CR, et al. The predictive value of exhaled nitric oxide measurements in assessing changes in asthma control. Am J Respir Crit Care Med 2001; 64(5):738–743.Google Scholar
  83. 83.
    Pijnenburg MW, Hofhuis W, Hop WC, De Jongste JC. Exhaled nitric oxide predicts asthma relapse in children with clinical asthma remission. Thorax 2005; 60(3):215–218.PubMedCrossRefGoogle Scholar
  84. 84.
    ATS/ERS Recommendations for Standardized Procedures for the Online and Offline Measurements of Exhaled Lower Respiratory Nitric Oxide and Nasal Nitric Oxide. Am J Respir Crit Care Med 2005; 171:912–930.CrossRefGoogle Scholar
  85. 85.
    Baraldi E, De Jongste JC. European Respiratory Society; American Thoracic Society. Measurement of exhaled nitric oxide in children, 2001. Eur Respir J 2002; 20(1):223–237.PubMedCrossRefGoogle Scholar
  86. 86.
    George SC, Hogman M, Permutt S, Silkoff PE. Modeling pulmonary nitric oxide exchange. J Appl Physiol 2004; 96(3):831–839.PubMedCrossRefGoogle Scholar
  87. 87.
    Tsoukias NM, George SC. A two-compartment model of pulmonary nitric oxide exchange dynamics. J Appl Physiol 1998; 85(2):653–666.PubMedGoogle Scholar
  88. 88.
    Berry M, Hargadon B, Morgan A, Shelley M, Richter J, Shaw D, et al. Alveolar nitric oxide in adults with asthma: evidence of distal lung inflammation in refractory asthma. Eur Respir J 2005; 25(6):986–991.PubMedCrossRefGoogle Scholar
  89. 89.
    Menzies D, Nair A, Lipworth B. Portable exhaled nitric oxide measurement: comparison with the “gold standard” technique. Chest 2007; 131(2):410–414.PubMedCrossRefGoogle Scholar
  90. 90.
    Wenzel SE. Asthma: fecining of the persistent adult phenotypes. Lancet 2006; 368:804–813.PubMedCrossRefGoogle Scholar
  91. 91.
    Horvath I, Hunt J, Barnes PJ, et al. ATS/ERS Task Force on Exhaled Breath. Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J 2005; 26(3):523–548.PubMedCrossRefGoogle Scholar
  92. 92.
    In't Veen J, De Gouw HW, Smits HH, Sont JK, Hiemstra PS, Sterk PJ, Bel EH. Repeatability of cellular and soluble markers of inflammation in induced sputum from patients with asthma. Eur Respir J 1996; 9(12):2441–2447.CrossRefGoogle Scholar
  93. 93.
    Louis R, Lau L, Bron AO, Roldaan AC, Rademecker M, Djukanovic R. The Relationship between Airways Inflammation and Asthma Severity. Am J Respir Crit Care Med 2000; 161(1):9–16.PubMedGoogle Scholar
  94. 94.
    Parameswaran K, Inman MD, Watson RM, Morris MM, Efthimiadis A, et al. Protective effects of fluticasone on allergen-induced airway responses and sputum inflammatory markers. Can Respir J 2000 July–Aug; 7(4):313–319.Google Scholar
  95. 95.
    Louis R, Sele J, Henket M, Cataldo D, Bettiol J, Seiden L, et al. Sputum eosinophil count in a large population of patients with mild to moderate steroid-naive asthma: distribution and relationship with methacholine bronchial hyperresponsiveness. Allergy 2002; 57(10):907–912.PubMedCrossRefGoogle Scholar
  96. 96.
    Jayaram L, Pizzichini E, Lemiere C, Man SFP, Cartier A, Hargreave FE, et al. Steroid naive eosinophilic asthma: anti-inflammatory effects of fluticasone and montelukast. Thorax 2005; 60(2):100–105.PubMedCrossRefGoogle Scholar
  97. 97.
    Green RH, Brightling CE, McKenna S, Hargadon B, Parker D, Bradding P, Wardlaw AJ, Pavord ID. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet 2002; 360(3947):1715–1721.PubMedCrossRefGoogle Scholar
  98. 98.
    Crameri R. The potential of proteomics and peptidomics for allergy and asthma research. Allergy 2005; 60(10):1227–1237.PubMedCrossRefGoogle Scholar
  99. 99.
    Nicholas B, Skipp P, Mould R, Rennard S, Davies D, et al. Shotgun proteomic analysis of human-induced sputum. Proteomics 2006; 6(15):4390–4401.PubMedCrossRefGoogle Scholar
  100. 100.
    Carraro S, Rezzi S, Reniero F, Heberger K, Giordano G, Zanconato S, Guillou C, Baraldi E. Metabolomics applied to exhaled breath condensate in childhood asthma. Am J Respir Crit Care Med 2007 May 15; 175(10):986–990.CrossRefGoogle Scholar
  101. 101.
    Dragonieri S, Schot R, Mertens BJ, Le Cessie S, Gauw SA, Spanevello A, et al. An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol. 2007; 120(4):856–862.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Klaus F. Rabe
    • 1
  • Adrian Gillissen
    • 2
  • Zuzana Diamant
    • 3
  1. 1.Department of PulmonologyLeiden University Medical CenterLeidenThe Netherlands
  2. 2.Robert-Koch-HospitalLeipzigGermany
  3. 3.Centre for Human Drug ResearchLeidenThe Netherlands

Personalised recommendations