Advertisement

Monitoring the Allergic Inflammation

  • Per Venge
Part of the Allergy Frontiers book series (ALLERGY, volume 4)

Allergy is essentially an inflammatory disease and our knowledge of the cells and mediators that are involved in the allergic inflammation has increased immensely during the last decade. Modern treatment of inflammatory disease should not only consider the disease entity and symptoms, but also the underlying pathophysiology in order to be optimal to the patient. Thus, the detailed characterization of the inflammatory mechanisms underlying symptom development in the individual patient (phenotyping of inflammation) is important in order to stratify the patient to the optimal treatment, but also for monitoring treatment efficacy and compliance. With today's knowledge and development numerous possibilities are at hand some of which some are described in this chapter. This includes markers of cells of particular interest such as eosinophils, mast cells, Th2-type lymphocytes, basophils but also many other cells and mediators such as neutrophil granulocytes, monocytes/macrophages, epithelial cells, dendritic cells, endothelial cells, platelets, cytokines, arachidonic acid metabolites and NO.

Keywords

Mast Cell Atopic Dermatitis Allergic Disease Allergy Clin Immunol Respir Crit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holgate ST (1999) The epidemic of allergy and asthma. Nature 402:B2–B4PubMedCrossRefGoogle Scholar
  2. 2.
    Amin K, Ludviksdottir D, Janson C, Nettelbladt O, Bjornsson E, Roomans GM, Boman G, Seveus L, Venge P (2000) Inflammation and structural changes in the airways of patients with atopic and nonatopic asthma. Am J Respir Crit Care Med 162:2295–2301PubMedGoogle Scholar
  3. 3.
    Siva R, Green RH, Brightling CE, Shelley M, Hargadon B, McKenna S, Monteiro W, Berry M, Parker D, Wardlaw AJ, Pavord ID (2007) Eosinophilic airway inflammation and exacerbations of COPD: a randomised controlled trial. Eur Respir J 29:906–913PubMedCrossRefGoogle Scholar
  4. 4.
    Silvestri M, Bontempelli M, Giacomelli M, Malerba M, Rossi GA, Di SA, Rossi A, Ricciardolo FL (2006) High serum levels of tumour necrosis factor-alpha and interleukin-8 in severe asthma: markers of systemic inflammation? Clin Exp Allergy 36:1373–1381PubMedCrossRefGoogle Scholar
  5. 5.
    Holgate ST (2006) A need for circulating biomarkers of severe persistent asthma and its treatment. Clin Exp Allergy 36:1355–1356PubMedCrossRefGoogle Scholar
  6. 6.
    Busse WW, Rosenwasser LJ (2003) Mechanisms of asthma. J Allergy Clin Immunol 111:S799–S804PubMedCrossRefGoogle Scholar
  7. 7.
    Venge P (1994) The monitoring of inflammation by specific cellular markers. Scand J Clin Lab Invest Suppl 219:47–54PubMedCrossRefGoogle Scholar
  8. 8.
    Venge P, Roxin L-E, Olsson I (1977) Radioimmunoassay of human eosinophil cationic protein. Br J Haematol 37:331–335PubMedCrossRefGoogle Scholar
  9. 9.
    Schwartz LB, Yunginger JW, Miller J, Bokhari R, Dull D (1989) Time course of appearance and disappearance of human mast cell tryptase in the circulation after anaphylaxis. J Clin Invest 83:1551–1555PubMedCrossRefGoogle Scholar
  10. 10.
    Venge P (1994) Soluble markers of allergic inflammation. Allergy 5:128–134Google Scholar
  11. 11.
    Abu Ghazaleh RI, Dunnette SL, Loegering DA, Checkel JL, Kita H, Thomas LL, Gleich GJ (1992) Eosinophil granule proteins in peripheral blood granulocytes. J Leukocyte Biol 52:611–618PubMedGoogle Scholar
  12. 12.
    Breton-Gorius J, Coquin Y, Guichard J (1978) Cytochemical distinction between azurophils and catalase-containing granules in leukocytes I. Studies in developing neutrophils and mono-cytes from patients with myeloperoxidase deficiency: comparison with peroxidase-deficient chicken heterophils. Lab Invest 38(No.1):21–31PubMedCrossRefGoogle Scholar
  13. 13.
    Bennett RM, Kokocinski T (1978) Lactoferrin content of peripheral blood cells. Br J Haematol 39:509–521PubMedCrossRefGoogle Scholar
  14. 14.
    Nielsen BS, Borregaard N, Bundgaard JR, Timshel S, Sehested M, Kjeldsen L (1996) Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut 38:414–420PubMedCrossRefGoogle Scholar
  15. 15.
    Xu S, Venge P (2000) Lipocalins as biochemical markers of disease. Biochim Biophys Acta 1482:298–307PubMedGoogle Scholar
  16. 16.
    Torsteinsdottir I, Hakansson L, Hallgren R, Gudbjornsson B, Arvidson NG, Venge P (1999) Serum lysozyme: a potential marker of monocyte/macrophage activity in rheumatoid arthritis. Rheumatology (Oxford) 38:1249–1254CrossRefGoogle Scholar
  17. 17.
    Dahlen SE, Kumlin M (2004) Monitoring mast cell activation by prostaglandin D2 in vivo. Thorax 59:453–455PubMedCrossRefGoogle Scholar
  18. 18.
    Bjork A, Venge P, Peterson CG (2000) Measurements of ECP in serum and the impact of plasma coagulation. Allergy 55:442–448PubMedCrossRefGoogle Scholar
  19. 19.
    Alving K, Weitzberg E, Lundberg JM (1993) Increased amount of nitric oxide in exhaled air of asthmatics. Eur Respir J 6:1368–1370PubMedGoogle Scholar
  20. 20.
    Kharitonov SA, Barnes PJ (2002) Biomarkers of some pulmonary diseases in exhaled breath. Biomarkers 7:1–32PubMedCrossRefGoogle Scholar
  21. 21.
    Pedroletti C, Zetterquist W, Nordvall L, Alving K (2002) Evaluation of exhaled nitric oxide in schoolchildren at different exhalation flow rates. Pediatr Res 52:393–398PubMedGoogle Scholar
  22. 22.
    Venge P, Bystrom J, Carlson M, Hakansson L, Karawacjzyk M, Peterson C, Seveus L, Trulson A (1999) Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin Exp Allergy 29:1172–1186PubMedCrossRefGoogle Scholar
  23. 23.
    Kristjánsson S, Strannegård IL, Strannegård Q, Peterson C, Enander I, Wennergren G (1996) Urinary eosinophil protein X in children with atopic asthma: a useful marker of antiinflam-matory treatment. J Allergy Clin Immunol 97:1179–1187PubMedCrossRefGoogle Scholar
  24. 24.
    Tauber E, Halmerbauer G, Frischer T, Gartner C, Horak F, Jr., Veiter A, Koller DY, Studnicka M (2000) Urinary eosinophil protein X in children: the relationship to asthma and atopy and normal values. Allergy 55:647–652PubMedCrossRefGoogle Scholar
  25. 25.
    Labbe A, Aublet-Cuvelier B, Jouaville L, Beaugeon G, Fiani L, Petit I, Ouchchane L, Doly M (2001) Prospective longitudinal study of urinary eosinophil protein X in children with asthma and chronic cough. Pediatr Pulmonol 31:354–362PubMedCrossRefGoogle Scholar
  26. 26.
    Oymar K (2001) High levels of urinary eosinophil protein X in young asthmatic children predict persistent atopic asthma. Pediatr Allergy Immunol 12:312–317PubMedCrossRefGoogle Scholar
  27. 27.
    Taylor DR, Pijnenburg MW, Smith AD, de Jongste JC (2006) Exhaled nitric oxide measurements: clinical application and interpretation. Thorax 61:817–827PubMedCrossRefGoogle Scholar
  28. 28.
    Pin I, Gibson PG, Kolendowicz R, Girgis-Gabardo A, Denburg JA, Hargreave FE, Dolovich J (1992) Use of induced sputum cell counts to investigate airway inflammation in asthma. Thorax 47:25–29PubMedCrossRefGoogle Scholar
  29. 29.
    Kelly MM, Keatings V, Leigh R, Peterson C, Shute J, Venge P, Djukanovic R (2002) Analysis of fluid-phase mediators. Eur Respir J Suppl 37:24s–39sPubMedGoogle Scholar
  30. 30.
    Virchow JC, Jr., Kroegel C, Hage U, Kortsik C, Matthys H, Werner P (1993) Comparison of sputum-ECP levels in bronchial asthma and chronic bronchitis. Allergy 48:112–118PubMedCrossRefGoogle Scholar
  31. 31.
    Fahy J V, Liu J, Wong H, Boushey HA (1994) Analysis of cellular and biochemical constituents of induced sputum after allergen challenge: a method for studying allergic airway inflammation. J Allergy Clin Immunol 93:1031–1039PubMedCrossRefGoogle Scholar
  32. 32.
    Koller DY, Urbanek R, Götz M (1995) Increased degranulation of eosinophil and neutrophil granulocytes in cystic fibrosis. Am J Respir Crit Care Med 152:629–633PubMedGoogle Scholar
  33. 33.
    Pizzichini E, Pizzichini MMM, Efthimiadis A, Evans S, Morris MM, Squillace D, Gleich GJ, Dolovich J, Hargreave FE (1996) Indices of airway inflammation in induced sputum: Reproducibility and validity of cell and fluid-phase measurements. Am J Respir Crit Care Med 154:308–317PubMedGoogle Scholar
  34. 34.
    Keatings VM, Barnes PJ (1997) Granulocyte activation markers in induced sputum: comparison between chronic obstructive pulmonary disease, asthma, and normal subjects. Am J Respir Crit Care Med 155:449–453PubMedGoogle Scholar
  35. 35.
    Fujimoto K, Kubo K, Matsuzawa Y, Sekiguchi M (1997) Eosinophil cationic protein levels in induced sputum correlate with the severity of bronchial asthma. Chest 112:1241–1247PubMedCrossRefGoogle Scholar
  36. 36.
    Sorva R, Metso T, Turpeinen M, Juntunen-Backman K, Bjorksten F, Haahtela T (1997) Eosinophil cationic protein in induced sputum as a marker of inflammation in asthmatic children. Pediatr Allergy Immunol 8:45–50PubMedCrossRefGoogle Scholar
  37. 37.
    Koller DY, Nilsson M, Enander I, Venge P, Eichler I (1998) Serum eosinophil cationic protein, eosinophil protein X and eosinophil peroxidase in relation to pulmonary function in cystic fibrosis. Clin Exp Allergy 28:241–248PubMedCrossRefGoogle Scholar
  38. 38.
    Dahlen I, Janson C, Bjornsson E, Stalenheim G, Peterson CG, Venge P (1999) Inflammatory markers in acute exacerbations of obstructive pulmonary disease: predictive value in relation to smoking history. Respir Med 93:744–751PubMedCrossRefGoogle Scholar
  39. 39.
    Maestrelli P, Richeldi L, Moretti M, Fabbri LM (2001) Analysis of sputum in COPD. Thorax 56:420–422PubMedCrossRefGoogle Scholar
  40. 40.
    Woodruff PG, Khashayar R, Lazarus SC, Janson S, Avila P, Boushey HA, Segal M, Fahy JV (2001) Relationship between airway inflammation, hyperresponsiveness, and obstruction in asthma. J Allergy Clin Immunol 108:753–758PubMedCrossRefGoogle Scholar
  41. 41.
    Gibson PG, Simpson JL, Saltos N (2001) Heterogeneity of airway inflammation in persistent asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest 119:1329–1336PubMedCrossRefGoogle Scholar
  42. 42.
    Metso T, Venge P, Haahtela T, Peterson CG, Seveus L (2002) Cell specific markers for eosi-nophils and neutrophils in sputum and bronchoalveolar lavage fluid of patients with respiratory conditions and healthy subjects. Thorax 57:449–451PubMedCrossRefGoogle Scholar
  43. 43.
    Keatings VM, Jatakanon A, Worsdell YM, Barnes PJ (1997) Effects of inhaled and oral glucocorticoids on inflammatory indices in asthma and COPD. Am J Respir Crit Care Med 155:542–548PubMedGoogle Scholar
  44. 44.
    Dahlen I, Janson C, Bjornsson E, Stalenheim G, Peterson CG, Venge P (2001) Changes in inflammatory markers following treatment of acute exacerbations of obstructive pulmonary disease. Respir Med 95:891–897PubMedCrossRefGoogle Scholar
  45. 45.
    Schmekel B, Ahlner J, Malmstrom M, Venge P (2001) Eosinophil cationic protein (ECP) in saliva: a new marker of disease activity in bronchial asthma. Respir Med 95:670–675PubMedCrossRefGoogle Scholar
  46. 46.
    Rasp G, Thomas PA, Bujia J (1994) Eosinophil inflammation of the nasal mucosa in allergic and non-allergic rhinitis measured by eosinophil cationic protein levels in native nasal fluid and serum. Clin Exp Allergy 24:1151–1156PubMedGoogle Scholar
  47. 47.
    Hurst DS, Venge P (2000) Evidence of eosinophil, neutrophil, and mast-cell mediators in the effusion of OME patients with and without atopy. Allergy 55:435–441PubMedCrossRefGoogle Scholar
  48. 48.
    Venge P, Nilsson L, Nyström S-O, Åberg T (1987) Serum and plasma measurements of neu-trophil granule proteins during cardiopulmonary bypass. A model to estimate human turnover of lactoferrin and myeloperoxidase. Eur J Haematol 39:339–345PubMedCrossRefGoogle Scholar
  49. 49.
    Carlson M, Håkansson L, Kämpe M, Stålenheim G, Peterson C, Venge P (1994) Degranulation of eosinophils from pollen-atopic patients with asthma is increased during pollen season. J Allergy Clin Immunol 89 (No.1, Part 1):131–139CrossRefGoogle Scholar
  50. 50.
    Venge P (2004) Monitoring the allergic inflammation. Allergy 59:26–32PubMedCrossRefGoogle Scholar
  51. 51.
    Stelmach I, Majak P, Grzelewski T, Jerzynska J, Juralowicz D, Stelmach W, Borzecka-Podsiadlowicz M, Korzeniewska A, Kuna P (2004) The ECP/Eo count ratio in children with asthma. J Asthma 41:539–546PubMedCrossRefGoogle Scholar
  52. 52.
    Lowhagen O, Wever AM, Lusuardi M, Moscato G, De Backer WA, Gandola L, Donner CF, Ahlstedt S, Larsson L, Holgate ST (2002) The inflammatory marker serum eosinophil cationic protein (ECP) compared with PEF as a tool to decide inhaled corticosteroid dose in asthmatic patients. Respir Med 96:95–101PubMedCrossRefGoogle Scholar
  53. 53.
    Jonsson UB, Bystrom J, Stalenheim G, Venge P (2002) Polymorphism of the eosinophil cationic protein-gene is related to the expression of allergic symptoms. Clin Exp Allergy 32:1092–1095PubMedCrossRefGoogle Scholar
  54. 54.
    Munthe-Kaas MC, Gerritsen J, Carlsen KH, Undlien D, Egeland T, Skinningsrud B, Torres T, Carlsen KL (2007) Eosinophil cationic protein (ECP) polymorphisms and association with asthma, s-ECP levels and related phenotypes. Allergy 62:429–436PubMedCrossRefGoogle Scholar
  55. 55.
    Noguchi E, Iwama A, Takeda K, Takeda T, Kamioka M, Ichikawa K, Akiba T, Arinami T, Shibasaki M (2003) The promoter polymorphism in the eosinophil cationic protein gene and its influence on the serum eosinophil cationic protein level. Am J Respir Crit Care Med 167:180–184PubMedCrossRefGoogle Scholar
  56. 56.
    Wolthers OD, Heuck C (2003) Circadian variations in serum eosinophil cationic protein, and serum and urine eosinophil protein X. Pediatr Allergy Immunol 14:130–133PubMedCrossRefGoogle Scholar
  57. 57.
    Pucci N, Novembre E, Cammarata MG, Bernardini R, Monaco MG, Calogero C, Vierucci A (2005) Scoring atopic dermatitis in infants and young children: distinctive features of the SCORAD index. Allergy 60:113–116PubMedCrossRefGoogle Scholar
  58. 58.
    Lee SY, Kim HB, Kim JH, Kim BS, Kang MJ, Jang SO, Hong SJ (2006) Eosinophils play a major role in the severity of exercise-induced bronchoconstriction in children with asthma. Pediatr Pulmonol 41:1161–1166PubMedCrossRefGoogle Scholar
  59. 59.
    Gore C, Peterson CG, Kissen P, Simpson BM, Lowe LA, Woodcock A, Custovic A (2003) Urinary eosinophilic protein X, atopy, and symptoms suggestive of allergic disease at 3 years of age. J Allergy Clin Immunol 112:702–708PubMedCrossRefGoogle Scholar
  60. 60.
    Kim KW, Lee KE, Kim ES, Song TW, Sohn MH, Kim KE (2007) Serum eosinophil-derived neurotoxin (EDN) in diagnosis and evaluation of severity and bronchial hyperresponsiveness in childhood asthma. Lung 185:97–103PubMedCrossRefGoogle Scholar
  61. 61.
    Menzies D, Nair A, Lipworth BJ (2006) Non-invasive measurement of airway inflammation in asthma. J Asthma 43:407–415PubMedCrossRefGoogle Scholar
  62. 62.
    Kharitonov SA, Barnes PJ (2006) Exhaled biomarkers. Chest 130:1541–1546PubMedCrossRefGoogle Scholar
  63. 63.
    Taylor DR (2006) Nitric oxide as a clinical guide for asthma management. J Allergy Clin Immunol 117:259–262PubMedCrossRefGoogle Scholar
  64. 64.
    Haahtela T (2002) Assessing airway inflammation: from guessing to quantitative measurements. Ann Med 34:74–76PubMedCrossRefGoogle Scholar
  65. 65.
    Lonnkvist K, Anderson M, Hedlin G, Svartengren M (2004) Exhaled NO and eosinophil markers in blood, nasal lavage and sputum in children with asthma after withdrawal of budesonide. Pediatr Allergy Immunol 15:351–358PubMedCrossRefGoogle Scholar
  66. 66.
    Douwes J, Gibson P, Pekkanen J, Pearce N (2002) Non-eosinophilic asthma: importance and possible mechanisms. Thorax 57:643–648PubMedCrossRefGoogle Scholar
  67. 67.
    Xu SY, Carlson M, Engstrom A, Garcia R, Peterson CG, Venge P (1994) Purification and characterization of a human neutrophil lipocalin (HNL) from the secondary granules of human neutrophils. Scand J Clin Lab Invest 54:365–376PubMedCrossRefGoogle Scholar
  68. 68.
    Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365:1231–1238PubMedCrossRefGoogle Scholar
  69. 69.
    Keatings VM, Barnes PJ (1997) Granulocyte activation markers in induced sputum: comparison between chronic obstructive pulmonary disease, asthma, and normal subjects. Am J Respir Crit Care Med 155:449–453PubMedGoogle Scholar
  70. 70.
    Stahl SP, Norn S, Weeke B (1984) A new method for detecting histamine release. Agents Actions 14:414–416CrossRefGoogle Scholar
  71. 71.
    Nopp A, Johansson SG, Ankerst J, Bylin G, Cardell LO, Gronneberg R, Irander K, Palmqvist M, Oman H (2006) Basophil allergen threshold sensitivity: a useful approach to anti-IgE treatment efficacy evaluation. Allergy 61:298–302PubMedCrossRefGoogle Scholar
  72. 72.
    Kleine-Tebbe J, Erdmann S, Knol EF, MacGlashan DW, Jr., Poulsen LK, Gibbs BF (2006) Diagnostic tests based on human basophils: potentials, pitfalls and perspectives. Int Arch Allergy Immunol 141:79–90PubMedCrossRefGoogle Scholar
  73. 73.
    Lin RY, Schwartz LB, Curry A, Pesola GR, Knight RJ, Lee HS, Bakalchuk L, Tenenbaum C, Westfal RE (2000) Histamine and tryptase levels in patients with acute allergic reactions: An emergency department-based study. J Allergy Clin Immunol 106:65–71PubMedCrossRefGoogle Scholar
  74. 74.
    Metz M, Maurer M (2007) Mast cells — key effector cells in immune responses. Trends Immunol 28:234–241PubMedCrossRefGoogle Scholar
  75. 75.
    Schwartz LB (2006) Diagnostic value of tryptase in anaphylaxis and mastocytosis. Immunol Allergy Clin North Am 26:451–463PubMedCrossRefGoogle Scholar
  76. 76.
    Taira M, Tamaoki J, Kondo M, Kawatani K, Nagai A (2002) Serum B12 tryptase level as a marker of allergic airway inflammation in asthma. J Asthma 39:315–322PubMedCrossRefGoogle Scholar
  77. 77.
    Marcucci F, Sensi L, Di CG, Salvatori S, Bernini M, Pecora S, Burastero SE (2005) Three-year follow-up of clinical and inflammation parameters in children monosensitized to mites undergoing sub-lingual immunotherapy. Pediatr Allergy Immunol 16:519–526PubMedCrossRefGoogle Scholar
  78. 78.
    Louis R, Lau LC, Bron AO, Roldaan AC, Radermecker M, Djukanovic R (2000) The relationship between airways inflammation and asthma severity. Am J Respir Crit Care Med 161:9–16PubMedGoogle Scholar
  79. 79.
    Wilson SJ, Lau L, Howarth PH (1998) Inflammatory mediators in naturally occurring rhinitis. Clin Exp Allergy 28:220–227PubMedCrossRefGoogle Scholar
  80. 80.
    Di Lorenzo G, Drago A, Esposito PM, Candore G, Colombo A, Gervasi F, Pacor ML, Purello DF, Caruso C (2001) Measurement of inflammatory mediators of mast cells and eosinophils in native nasal lavage fluid in nasal polyposis. Int Arch Allergy Immunol 125:164–175PubMedCrossRefGoogle Scholar
  81. 81.
    Hoekstra MO, Hoekstra Y, De Reus D, Rutgers B, Gerritsen J, Kauffman HF (1997) Interleukin-4, interferon-gamma and interleukin-5 in peripheral blood of children with moderate atopic asthma. Clin Exp Allergy 27:1254–1260PubMedCrossRefGoogle Scholar
  82. 82.
    Park SW, Jangm HK, An MH, Min JW, Jang AS, Lee JH, Park CS (2005) Interleukin-13 and interleukin-5 in induced sputum of eosinophilic bronchitis: comparison with asthma. Chest 128:1921–1927PubMedCrossRefGoogle Scholar
  83. 83.
    Lampinen M, Carlson M, Hakansson LD, Venge P (2004) Cytokine-regulated accumulation of eosinophils in inflammatory disease. Allergy 59:793–805PubMedCrossRefGoogle Scholar
  84. 84.
    Sahid El-Radhi A, Hogg CL, Bungre JK, Bush A, Corrigan CJ (2000) Effect of oral glu-cocorticoid treatment on serum inflammatory markers in acute asthma. Arch Dis Child 83:158–162PubMedCrossRefGoogle Scholar
  85. 85.
    Lee YC, Lee KH, Lee HB, Rhee YK (2001) Serum levels of interleukins (IL)-4, IL-5, IL-13, and interferon-gamma in acute asthma. J Asthma 38:665–671PubMedCrossRefGoogle Scholar
  86. 86.
    Berry MA, Parker D, Neale N, Woodman L, Morgan A, Monk P, Bradding P, Wardlaw AJ, Pavord ID, Brightling CE (2004) Sputum and bronchial submucosal IL-13 expression in asthma and eosinophilic bronchitis. J Allergy Clin Immunol 114:1106–1109PubMedCrossRefGoogle Scholar
  87. 87.
    Komai-Koma M, McKay A, Thomson L, McSharry C, Chalmers GW, Liew FY, Thomson NC (2001) Immuno-regulatory cytokines in asthma: IL-15 and IL-13 in induced sputum. Clin Exp Allergy 31:1441–1448PubMedCrossRefGoogle Scholar
  88. 88.
    Erin EM, Leaker BR, Zacharasiewicz AS, Higgins LA, Williams TJ, Boyce MJ, de BP, Durham SR, Barnes PJ, Hansel TT (2005) Single dose topical corticosteroid inhibits IL-5 and IL-13 in nasal lavage following grass pollen challenge. Allergy 60:1524–1529PubMedCrossRefGoogle Scholar
  89. 89.
    Arima K, Umeshita-Suyama R, Sakata Y, Akaiwa M, Mao XQ, Enomoto T, Dake Y, Shimazu S, Yamashita T, Sugawara N, Brodeur S, Geha R, Puri RK, Sayegh MH, Adra CN, Hamasaki N, Hopkin JM, Shirakawa T, Izuhara K (2002) Upregulation of IL-13 concentration in vivo by the IL13 variant associated with bronchial asthma. J Allergy Clin Immunol 109:980–987PubMedCrossRefGoogle Scholar
  90. 90.
    Pumputiene I, Emuzyte R, Dubakiene R, Firantiene R, Tamosiunas V (2006) T cell and eosi-nophil activation in mild and moderate atopic and nonatopic children's asthma in remission. Allergy 61:43–48PubMedGoogle Scholar
  91. 91.
    Wolkerstorfer A, Savelkoul HF, de Waard van der Spek FB, Neijens HJ, van MT, Oranje AP (2003) Soluble E-selectin and soluble ICAM-1 levels as markers of the activity of atopic dermatitis in children. Pediatr Allergy Immunol 14:302–306PubMedCrossRefGoogle Scholar
  92. 92.
    Janson C, Ludviksdottir D, Gunnbjornsdottir M, Bjornsson EH, Hakansson L, Venge P (2005) Circulating adhesion molecules in allergic and non-allergic asthma. Respir Med 99:45–51PubMedCrossRefGoogle Scholar
  93. 93.
    Rochlitzer S, Nassenstein C, Braun A (2006) The contribution of neurotrophins to the patho-genesis of allergic asthma. Biochem Soc Trans 34:594–599PubMedCrossRefGoogle Scholar
  94. 94.
    Bonini S, Lambiase A, Bonini S, Angelucci F, Magrini L, Manni L, Aloe L (1996) Circulating nerve growth factor levels are increased in humans with allergic diseases and asthma. Proc Natl Acad Sci USA 93:10955–10960PubMedCrossRefGoogle Scholar
  95. 95.
    Toyoda M, Nakamura M, Makino T, Hino T, Kagoura M, Morohashi M (2002) Nerve growth factor and substance P are useful plasma markers of disease activity in atopic dermatitis. Br J Dermatol 147:71–79PubMedCrossRefGoogle Scholar
  96. 96.
    Lambiase A, Bonini S, Micera A, Magrini L, Bracci Laudiero L, Aloe L (1995) Increased plasma levels of nerve growth factor in vernal keratoconjunctivitis and relationship to con-junctival mast cells. Invest Ophthalmol Vis Sci 36:2127–2132PubMedGoogle Scholar
  97. 97.
    Raap U, Werfel T, Goltz C, Deneka N, Langer K, Bruder M, Kapp A, Schmid-Ott G, Wedi B (2006) Circulating levels of brain-derived neurotrophic factor correlate with disease severity in the intrinsic type of atopic dermatitis. Allergy 61:1416–1418PubMedCrossRefGoogle Scholar
  98. 98.
    Namura K, Hasegawa G, Egawa M, Matsumoto T, Kobayashi R, Yano T, Katoh N, Kishimoto S, Ohta M, Obayashi H, Ose H, Fukui M, Nakamura N, Yoshikawa T (2007) Relationship of serum brain-derived neurotrophic factor level with other markers of disease severity in patients with atopic dermatitis. Clin Immunol 122:181–186PubMedCrossRefGoogle Scholar
  99. 99.
    Feltis BN, Reid DW, Ward C, Walters EH (2004) BAL eotaxin and IL-5 in asthma, and the effects of inhaled corticosteroid and beta2 agonist. Respirology 9:507–513PubMedCrossRefGoogle Scholar
  100. 100.
    Tateno H, Nakamura H, Minematsu N, Nakajima T, Takahashi S, Nakamura M, Fukunaga K, Asano K, Lilly CM, Yamaguchi K (2004) Plasma eotaxin level and severity of asthma treated with corticosteroid. Respir Med 98:782–790PubMedCrossRefGoogle Scholar
  101. 101.
    Yamamoto K, Takanashi S, Hasegawa Y, Kanehira Y, Kaizuka M, Okumura K (2003) Eotaxin level in induced sputum is increased in patients with bronchial asthma and in smokers. Respiration 70:600–605PubMedCrossRefGoogle Scholar
  102. 102.
    Taha RA, Laberge S, Hamid Q, Olivenstein R (2001) Increased expression of the chemoat-tractant cytokines eotaxin, monocyte chemotactic protein-4, and interleukin-16 in induced sputum in asthmatic patients. Chest 120:595–601PubMedCrossRefGoogle Scholar
  103. 103.
    Lilly CM, Woodruff PG, Camargo CA, Jr., Nakamura H, Drazen JM, Nadel ES, Hanrahan JP (1999) Elevated plasma eotaxin levels in patients with acute asthma. J Allergy Clin Immunol 104:786–790PubMedCrossRefGoogle Scholar
  104. 104.
    Ngelova-Fischer I, Hipler UC, Bauer A, Fluhr JW, Tsankov N, Fischer TW, Elsner P (2006) Significance of interleukin-16, macrophage-derived chemokine, eosinophil cationic protein and soluble E-selectin in reflecting disease activity of atopic dermatitis — from laboratory parameters to clinical scores. Br J Dermatol 154:1112–1117CrossRefGoogle Scholar
  105. 105.
    Leung TF, Ma KC, Hon KL, Lam CW, Wan H, Li CY, Chan IH (2003) Serum concentration of macrophage-derived chemokine may be a useful inflammatory marker for assessing severity of atopic dermatitis in infants and young children. Pediatr Allergy Immunol 14:296–301PubMedCrossRefGoogle Scholar
  106. 106.
    Ando M, Shima M (2007) Serum interleukins 12 and 18 and immunoglobulin E concentrations and allergic symptoms in Japanese schoolchildren. J Investig Allergol Clin Immunol 17:14–19PubMedGoogle Scholar
  107. 107.
    Hon KL, Leung TF, Ma KC, Wong CK, Wan H, Lam CW (2004) Serum concentration of IL-18 correlates with disease extent in young children with atopic dermatitis. Pediatr Dermatol 21:619–622PubMedCrossRefGoogle Scholar
  108. 108.
    Yoshizawa Y, Nomaguchi H, Izaki S, Kitamura K (2002) Serum cytokine levels in atopic dermatitis. Clin Exp Dermatol 27:225–229PubMedCrossRefGoogle Scholar
  109. 109.
    Kalayci O, Sonna LA, Woodruff PG, Camargo CA, Jr., Luster AD, Lilly CM (2004) Monocyte chemotactic protein-4 (MCP-4; CCL-13): a biomarker of asthma. J Asthma 41:27–33PubMedCrossRefGoogle Scholar
  110. 110.
    Kumlin M (2000) Measurement of leukotrienes in humans. Am J Respir Crit Care Med 161:S102–S106PubMedGoogle Scholar
  111. 111.
    Macfarlane AJ, Dworski R, Sheller JR, Pavord ID, Kay AB, Barnes NC (2000) Sputum cysteinyl leukotrienes increase 24 hours after allergen inhalation in atopic asthmatics. Am J Respir Crit Care Med 161:1553–1558PubMedGoogle Scholar
  112. 112.
    Pavord ID, Ward R, Woltmann G, Wardlaw AJ, Sheller JR, Dworski R (1999) Induced sputum eicosanoid concentrations in asthma. Am J Respir Crit Care Med 160:1905–1909PubMedGoogle Scholar
  113. 113.
    Vachier I, Kumlin M, Dahlen SE, Bousquet J, Godard P, Chanez P (2003) High levels of urinary leukotriene E4 excretion in steroid treated patients with severe asthma. Respir Med 97:1225–1229PubMedCrossRefGoogle Scholar
  114. 114.
    Severien C, Artlich A, Jonas S, Becher G (2000) Urinary excretion of leukotriene E4 and eosinophil protein X in children with atopic asthma. Eur Respir J 16:588–592PubMedCrossRefGoogle Scholar
  115. 115.
    Oymar K, Aksnes L (2005) Increased levels of urinary leukotriene E4 in children with severe atopic eczema/dermatitis syndrome. Allergy 60:86–89PubMedCrossRefGoogle Scholar
  116. 116.
    Misso NL, Aggarwal S, Phelps S, Beard R, Thompson PJ (2004) Urinary leukotriene E4 and 9 alpha, 11 beta-prostaglandin F concentrations in mild, moderate and severe asthma, and in healthy subjects. Clin Exp Allergy 34:624–631PubMedCrossRefGoogle Scholar
  117. 117.
    Cai C, Yang J, Hu S, Zhou M, Guo W (2007) Relationship between urinary cysteinyl leuko-triene E4 levels and clinical response to antileukotriene treatment in patients with asthma. Lung 185:105–112PubMedCrossRefGoogle Scholar
  118. 118.
    Hakansson L, Heinrich C, Rak S, Venge P (1998) Activation of B-lymphocytes during pollen season. Effect of immunotherapy [see comments]. Clin Exp Allergy 28:791–798Google Scholar
  119. 119.
    Seton K, Hakansson L, Carlson M, Stalenheim G, Venge P (2003) Apoptotic eosinophils express IL-2R chains alpha and beta and co-stimulatory molecules CD28 and CD86. Respir Med 97:893–902PubMedCrossRefGoogle Scholar
  120. 120.
    Blaylock MG, Lipworth BJ, Dempsey OJ, Duncan CJ, Lee DK, Lawrie A, Douglas JG, Walsh GM (2003) Eosinophils from patients with asthma express higher levels of the pan-leucocyte receptor CD45 and the isoform CD45RO. Clin Exp Allergy 33:936–941PubMedCrossRefGoogle Scholar
  121. 121.
    Phillips RM, Stubbs VE, Henson MR, Williams TJ, Pease JE, Sabroe I (2003) Variations in eosinophil chemokine responses: an investigation of CCR1 and CCR3 function, expression in atopy, and identification of a functional CCR1 promoter. J Immunol 170:6190–6201PubMedGoogle Scholar
  122. 122.
    Shi HZ, Xie ZF, Deng JM, Chen YQ, Xiao CQ (2004) Soluble CD86 protein in serum samples of patients with asthma. Thorax 59:870–875PubMedCrossRefGoogle Scholar
  123. 123.
    Izuhara K, Saito H (2006) Microarray-based identification of novel biomarkers in asthma. Allergol Int 55:361–367PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Per Venge
    • 1
  1. 1.Department of Medical Sciences, Clinical Chemistry, and Asthma and Allergy Research CentreUppsala UniversityUppsalaSweden

Personalised recommendations