Skip to main content

Flow-Assisted Analysis of Basophils: A Valuable Instrument for In Vitro Allergy Diagnosis

  • Chapter
Allergy Frontiers: Diagnosis and Health Economics

Part of the book series: Allergy Frontiers ((ALLERGY,volume 4))

It is clear that the basophil activation test (BAT) that rests upon flow-assisted quantification of in vitro-activated basophils provides the physician with a novel diagnostic tool that could rapidly spread because of the numerous flow cytometers already set in clinical and experimental laboratories.

Nowadays, the technique has been adopted for the diagnosis of inhalant allergy, natural rubber latex allergy, primary and secondary food allergies, hymenoptera venoms allergy and allergy for certain drugs. Applying donor basophils, the technique has proven to be useful in the detection of auto-antibodies responsible for chronic autoimmune urticaria. As the technique closely resembles the in vivo pathway ultimately leading to symptoms, it has already been successfully adopted for other objectives such as differentiation between clinically relevant and irrelevant IgE antibody results, quantitative evaluation of (residual) allergenicity of recombinant proteins and allergoids, component resolved diagnosis, to assess efficacy of anti-IgE treatment, to select and monitor specific immunotherapy and to study signalling in basophils. Finally, because basophils can be stimulated ex vivo, they provide the theoretical potential of measuring more than specific IgE, but rather a biological response from cells that were, until shortly before the assay, subject to the host's milieu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bochner BS, Schleimer RP. Mast cells, basophils, and eosinophils: distinct but overlapping pathways for recruitment. Immunol Rev 2001; 179:5–15.

    Article  PubMed  CAS  Google Scholar 

  2. Ghannadan M, Hauswirth AW, Schernthaner GH, Muller MR, Klepetko W, Schatzl G, et al. Detection of novel CD antigens on the surface of human mast cells and basophils. Int Arch Allergy Immunol 2002; 127(4):299–307.

    Article  PubMed  CAS  Google Scholar 

  3. Falcone FH, Zillikens D, Gibbs BF. The 21st century renaissance of the basophil? Current insights into its role in allergic responses and innate immunity. Exp Dermatol 2006; 15(11):855–864.

    Article  PubMed  CAS  Google Scholar 

  4. Florian S, Sonneck K, Czerny M, Hennersdorf F, Hauswirth AW, Buhring HJ, et al. Detection of novel leukocyte differentiation antigens on basophils and mast cells by HLDA8 antibodies. Allergy 2006; 61(9):1054–1062.

    Article  PubMed  CAS  Google Scholar 

  5. Valent P, Bettelheim P. Cell surface structures on human basophils and mast cells: biochemical and functional characterization. Adv Immunol 1992; 52:333–423.

    Article  PubMed  CAS  Google Scholar 

  6. Knol EF. Requirements for effective IgE cross-linking on mast cells and basophils. Mol Nutr Food Res 2006; 50(7):620–624.

    Article  PubMed  CAS  Google Scholar 

  7. Dvorak AM. Cell biology of the basophil. Int Rev Cytol 1998; 180:87–236.

    Article  PubMed  CAS  Google Scholar 

  8. Crivellato E, Nico B, Mallardi F, Beltrami CA, Ribatti D. Piecemeal degranulation as a general secretory mechanism? Anat Rec A Discov Mol Cell Evol Biol 2003; 274(1)778–784.

    Article  PubMed  Google Scholar 

  9. Ebo DG, Fisher MM, Hagendorens MM, Bridts CH, Stevens WJ. Anaphylaxis during anaesthesia: diagnostic approach. Allergy 2007; 62(5):471–487.

    Article  PubMed  CAS  Google Scholar 

  10. Lichtenstein LM, Sobotka AK, Malveaux FJ, Gillespie E. IgE-induced changes in human basophil cyclic AMP levels. Int Arch Allergy Appl Immunol 1978; 56(5):473–478.

    PubMed  CAS  Google Scholar 

  11. Vilarino N, Miura K, MacGlashan DW, Jr. Acute IL-3 priming up-regulates the stimulus-induced Raf-1-Mek-Erk cascade independently of IL-3-induced activation of Erk. J Immunol 2005; 175(5):3006–3014.

    PubMed  CAS  Google Scholar 

  12. Lim LH, Burdick MM, Hudson SA, Mustafa FB, Konstantopoulos K, Bochner BS. Stimulation of human endothelium with IL-3 induces selective basophil accumulation in vitro. J Immunol 2006; 176(9):5346–5353.

    PubMed  CAS  Google Scholar 

  13. Cozon G, Ferrandiz J, Peyramond D, Brunet J. Detection of activated basophils using flow cytometry for diagnosis in atopic patients. Allergol Immunopathol (Madr) 1999; 27(4):182–187.

    CAS  Google Scholar 

  14. Ocmant A, Peignois Y, Mulier S, Hanssens L, Michils A, Schandene L. Flow cytometry for basophil activation markers: the measurement of CD203c up-regulation is as reliable as CD63 expression in the diagnosis of cat allergy. J Immunol Meth 2007; 320(1–2):40–48.

    Article  CAS  Google Scholar 

  15. Ebo DG, Lechkar B, Schuerwegh AJ, Bridts CH, De Clerck LS, Stevens WJ. Comments regarding ‘Marked improvement of the basophil activation test by detecting CD203c instead of CD63’ by Boumiza, et al. Clin Exp Allergy 2003; 33(6):849–853.

    Article  PubMed  CAS  Google Scholar 

  16. Gyimesi E, Sipka S, Danko K, Kiss E, Hidvegi B, Gal M, et al. Basophil CD63 expression assay on highly sensitized atopic donor leucocytes-a useful method in chronic autoimmune urticaria. Br J Dermatol 2004; 151(2):388–396.

    Article  PubMed  CAS  Google Scholar 

  17. de Weck AL, Stadler BM, Dahinden CA. New perspectives in the modulation of allergic inflammation. Int Arch Allergy Appl Immunol 1989; 90(Suppl 1):17–21.

    PubMed  Google Scholar 

  18. de Weck AL, Sanz ML. For allergy diagnostic flow cytometry, detection of CD203c instead of CD63 is not at all an improvement in other hands. Clin Exp Allergy 2003; 33(6):849–852.

    Article  PubMed  Google Scholar 

  19. Stallman PJ. Number of cell-bound IgE molecules on human basophils in atopic and non-atopic subjects. Scand J Respir Dis Suppl 1977; 98:23–24.

    PubMed  CAS  Google Scholar 

  20. Malveaux FJ, Conroy MC, Adkinson NF, Jr., Lichtenstein LM. IgE receptors on human basophils. Relationship to serum IgE concentration. J Clin Invest 1978; 62(1):176–181.

    Article  PubMed  CAS  Google Scholar 

  21. MacGlashan DW, Jr., Bochner BS, Adelman DC, Jardieu PM, Togias A, Kenzie-White J, et al. Down-regulation of Fc(epsilon)RI expression on human basophils during in vivo treatment of atopic patients with anti-IgE antibody. J Immunol 1997; 158(3):1438–1445.

    PubMed  CAS  Google Scholar 

  22. MacGlashan D, Jr., Lichtenstein LM, Kenzie-White J, Chichester K, Henry AJ, Sutton BJ, et al. Upregulation of FcepsilonRI on human basophils by IgE antibody is mediated by interaction of IgE with FcepsilonRI. J Allergy Clin Immunol 1999; 104(2 Pt 1):492–498.

    Article  PubMed  CAS  Google Scholar 

  23. Turner H, Kinet JP. Signalling through the high-affinity IgE receptor Fc epsilonRI. Nature 1999; 402(6760 Suppl):B24–B30.

    Article  PubMed  CAS  Google Scholar 

  24. Valent P, Schernthaner GH, Sperr WR, Fritsch G, Agis H, Willheim M, et al. Variable expression of activation-linked surface antigens on human mast cells in health and disease. Immunol Rev 2001; 179:74–81.

    Article  PubMed  CAS  Google Scholar 

  25. Hauswirth AW, Natter S, Ghannadan M, Majlesi Y, Schernthaner GH, Sperr WR, et al. Recombinant allergens promote expression of CD203c on basophils in sensitized individuals. J Allergy Clin Immunol 2002; 110(1):102–109.

    Article  PubMed  CAS  Google Scholar 

  26. Sihra BS, Kon OM, Grant JA, Kay AB. Expression of high-affinity IgE receptors (Fc epsilon RI) on peripheral blood basophils, monocytes, and eosinophils in atopic and nonatopic subjects: relationship to total serum IgE concentrations. J Allergy Clin Immunol 1997; 99(5):699–706.

    Article  PubMed  CAS  Google Scholar 

  27. Goding JW. Ecto-enzymes: physiology meets pathology. J Leukoc Biol 2000; 67(3): 285–311.

    PubMed  CAS  Google Scholar 

  28. Buhring HJ, Simmons PJ, Pudney M, Muller R, Jarrossay D, van AA, et al. The monoclonal antibody 97A6 defines a novel surface antigen expressed on human basophils and their multipotent and unipotent progenitors. Blood 1999; 94(7):2343–2356.

    PubMed  CAS  Google Scholar 

  29. Buhring HJ, Seiffert M, Giesert C, Marxer A, Kanz L, Valent P, et al. The basophil activation marker defined by antibody 97A6 is identical to the ectonucleotide pyrophosphatase/ phosphodiesterase 3. Blood 2001; 97(10):3303–3305.

    Article  PubMed  CAS  Google Scholar 

  30. Lewis RA. Leukotrienes and other lipid mediators of asthma. Chest 1985; 87(1 Suppl):5S–10S.

    Article  PubMed  CAS  Google Scholar 

  31. Murray JJ, Tonnel AB, Brash AR, Roberts LJ, Gosset P, Workman R, et al. Release of prostaglandin D2 into human airways during acute antigen challenge. N Engl J Med 1986; 315(13):800–804.

    PubMed  CAS  Google Scholar 

  32. Wenzel SE, Westcott JY, Larsen GL. Bronchoalveolar lavage fluid mediator levels 5 minutes after allergen challenge in atopic subjects with asthma: relationship to the development of late asthmatic responses. J Allergy Clin Immunol 1991; 87(2):540–548.

    Article  PubMed  CAS  Google Scholar 

  33. Nagata K, Hirai H, Tanaka K, Ogawa K, Aso T, Sugamura K, et al. CRTH2, an orphan receptor of T-helper-2-cells, is expressed on basophils and eosinophils and responds to mast cell-derived factor(s). FEBS Lett 1999; 459(2):195–199.

    Article  PubMed  CAS  Google Scholar 

  34. Monneret G, Gravel S, Diamond M, Rokach J, Powell WS. Prostaglandin D2 is a potent chemoattractant for human eosinophils that acts via a novel DP receptor. Blood 2001; 98(6):1942–1948.

    Article  PubMed  CAS  Google Scholar 

  35. Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori, Y, et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 2001; 193(2):255–261.

    Article  PubMed  CAS  Google Scholar 

  36. Sugimoto H, Shichijo M, Iino T, Manabe Y, Watanabe A, Shimazaki M, et al. An orally bioavailable small molecule antagonist of CRTH2, ramatroban (BAY u3405), inhibits prostaglandin D2-induced eosinophil migration in vitro. J Pharmacol Exp Ther 2003; 305(1):347–352.

    Article  PubMed  CAS  Google Scholar 

  37. Boie Y, Sawyer N, Slipetz DM, Metters KM, Abramovitz M. Molecular cloning and characterization of the human prostanoid DP receptor. J Biol Chem 1995; 270(32):18910–18916.

    Article  PubMed  CAS  Google Scholar 

  38. Abe H, Takeshita T, Nagata K, Arita T, Endo Y, Fujita T, et al. Molecular cloning, chromosome mapping and characterization of the mouse CRTH2 gene, a putative member of the leukocyte chemoattractant receptor family. Gene 1999; 227(1):71–77.

    Article  PubMed  CAS  Google Scholar 

  39. Nagata K, Hirai H. The second PGD(2) receptor CRTH2: structure, properties, and functions in leukocytes. Prostaglandins Leukot Essent Fatty Acids 2003; 69(2–3):169–177.

    Article  PubMed  CAS  Google Scholar 

  40. Yoshimura-Uchiyama C, Iikura M, Yamaguchi M, Nagase H, Ishii A, Matsushima K, et al. Differential modulation of human basophil functions through prostaglandin D2 receptors DP and chemoattractant receptor-homologous molecule expressed on Th2 cells/DP2. Clin Exp Allergy 2004; 34(8):1283–1290.

    Article  PubMed  CAS  Google Scholar 

  41. Kostenis E, Ulven T. Emerging roles of DP and CRTH2 in allergic inflammation. Trends Mol Med 2006; 12(4):148–158.

    Article  PubMed  CAS  Google Scholar 

  42. Boumiza R, Debard AL, Monneret G. The basophil activation test by flow cytometry: recent developments in clinical studies, standardization and emerging perspectives. Clin Mol Allergy 2005; 3:9.

    Article  PubMed  CAS  Google Scholar 

  43. Heinemann A, Ofner M, Amann R, Peskar BA. A novel assay to measure the calcium flux in human basophils: effects of chemokines and nerve growth factor. Pharmacology 2003; 67(1):49–54.

    Article  PubMed  CAS  Google Scholar 

  44. Sturm GJ, Bohm E, Trummer M, Weiglhofer I, Heinemann A, Aberer W. The CD63 basophil activation test in Hymenoptera venom allergy: a prospective study. Allergy 2004; 59(10):1110–1117.

    Article  PubMed  CAS  Google Scholar 

  45. Gonzalez-Munoz M, Luque R, Nauwelaers F, Moneo I. Detection of Anisakis simplex-induced basophil activation by flow cytometry. Cytometry B Clin Cytom 2005; 68(1):31–36.

    PubMed  Google Scholar 

  46. Ebo DG, Bridts CH, Hagendorens MM, Mertens CH, De Clerck LS, Stevens WJ. Flow-assisted diagnostic management of anaphylaxis from rocuronium bromide. Allergy 2006; 61(8):935–939.

    Article  PubMed  CAS  Google Scholar 

  47. Frezzolini A, Provini A, Teofoli P, Pomponi D, De PO. Serum-induced basophil CD63 expression by means of a tricolour flow cytometric method for the in vitro diagnosis of chronic urticaria. Allergy 2006; 61(9):1071–1077.

    Article  PubMed  CAS  Google Scholar 

  48. Agis H, Beil WJ, Bankl HC, Fureder W, Sperr WR, Ghannadan M, et al. Mast cell-lineage versus basophil lineage involvement in myeloproliferative and myelodysplastic syndromes: diagnostic role of cell-immunophenotyping. Leuk Lymphoma 1996; 22(3–4):187–204.

    PubMed  CAS  Google Scholar 

  49. Moretti S, Lanza F, Dabusti M, Tieghi A, Campioni D, Dominici M, et al. CD123 (interleukin 3 receptor alpha chain). J Biol Regul Homeost Agents 2001; 15(1):98–100.

    PubMed  CAS  Google Scholar 

  50. Nieuwenhuis HK, van Oosterhout JJ, Rozemuller E, van IF, Sixma JJ. Studies with a monoclonal antibody against activated platelets: evidence that a secreted 53,000-molecular weight lysosome-like granule protein is exposed on the surface of activated platelets in the circulation. Blood 1987; 70(3):838–845.

    PubMed  CAS  Google Scholar 

  51. Metzelaar MJ, Wijngaard PL, Peters PJ, Sixma JJ, Nieuwenhuis HK, Clevers HC. CD63 antigen. A novel lysosomal membrane glycoprotein, cloned by a screening procedure for intracellular antigens in eukaryotic cells. J Biol Chem 1991; 266(5):3239–3245.

    CAS  Google Scholar 

  52. Grutzkau A, Smorodchenko A, Lippert U, Kirchhof L, Artuc M, Henz BM. LAMP-1 and LAMP-2, but not LAMP-3, are reliable markers for activation-induced secretion of human mast cells. Cytometry A 2004; 61(1):62–68.

    Article  PubMed  CAS  Google Scholar 

  53. Knol EF, Mul FP, Jansen H, Calafat J, Roos D. Monitoring human basophil activation via CD63 monoclonal antibody 435. J Allergy Clin Immunol 1991; 88(3 Pt 1):328–338.

    Article  PubMed  CAS  Google Scholar 

  54. Sainte-Laudy J, Sabbah A, Vallon C, Guerin JC. Analysis of anti-IgE and allergen induced human basophil activation by flow cytometry. Comparison with histamine release. Inflamm Res 1998; 47(10):401–408.

    CAS  Google Scholar 

  55. Abuaf N, Rajoely B, Ghazouani E, Levy DA, Pecquet C, Chabane H, et al. Validation of a flow cytometric assay detecting in vitro basophil activation for the diagnosis of muscle relaxant allergy. J Allergy Clin Immunol 1999; 104(2 Pt 1):411–418.

    Article  PubMed  CAS  Google Scholar 

  56. Moneret-Vautrin DA, Sainte-Laudy J, Kanny G, Fremont S. Human basophil activation measured by CD63 expression and LTC4 release in IgE-mediated food allergy. Ann Allergy Asthma Immunol 1999; 82(1):33–40.

    PubMed  CAS  Google Scholar 

  57. Hennersdorf F, Florian S, Jakob A, Baumgartner K, Sonneck K, Nordheim A, et al. Identification of CD13, CD107a, and CD164 as novel basophil-activation markers and dissection of two response patterns in time kinetics of ige-dependent upregulation. Cell Res 2005; 15(5):325–335.

    Article  PubMed  CAS  Google Scholar 

  58. Monneret G, Boumiza R, Gravel S, Cossette C, Bienvenu J, Rokach J, et al. Effects of prostaglandin D(2) and 5-lipoxygenase products on the expression of CD203c and CD11b by basophils. J Pharmacol Exp Ther 2005; 312(2):627–634.

    Article  PubMed  CAS  Google Scholar 

  59. Buhring HJ, Streble A, Valent P. The basophil-specific ectoenzyme E-NPP3 (CD203c) as a marker for cell activation and allergy diagnosis. Int Arch Allergy Immunol 2004; 133(4):317–329.

    Article  PubMed  CAS  Google Scholar 

  60. Yoshimura C, Yamaguchi M, Iikura M, Izumi S, Kudo K, Nagase H, et al. Activation markers of human basophils: CD69 expression is strongly and preferentially induced by IL-3. J Allergy Clin Immunol 2002; 109(5):817–823.

    Article  PubMed  CAS  Google Scholar 

  61. Majlesi Y, Samorapoompichit P, Hauswirth AW, Schernthaner GH, Ghannadan M, Baghestanian M, et al. Cerivastatin and atorvastatin inhibit IL-3-dependent differentiation and IgE-mediated histamine release in human basophils and downmodulate expression of the basophil-activation antigen CD203c/E-NPP3. J Leukoc Biol 2003; 73(1):107–117.

    Article  PubMed  CAS  Google Scholar 

  62. Binder M, Fierlbeck G, King T, Valent P, Buhring HJ. Individual hymenoptera venom compounds induce upregulation of the basophil activation marker ectonucleotide pyrophos-phatase/phosphodiesterase 3 (CD203c) in sensitized patients. Int Arch Allergy Immunol 2002; 129(2):160–168.

    Article  PubMed  CAS  Google Scholar 

  63. Sanz ML, Garcia-Aviles MC, Tabar AI, Anda M, Garcia BE, Barber D, et al. Basophil Activation Test and specific IgE measurements using a panel of recombinant natural rubber latex allergens to determine the latex allergen sensitization profile in children. Pediatr Allergy Immunol 2006; 17(2):148–156.

    Article  PubMed  Google Scholar 

  64. Sanz ML, Gamboa PM, Garcia-Aviles C, Vila L, Dieguez I, Antepara I, et al. Flow-cytometric cellular allergen stimulation test in latex allergy. Int Arch Allergy Immunol 2003; 130(1):33–39.

    Article  PubMed  CAS  Google Scholar 

  65. Kleine-Tebbe J, Erdmann S, Knol EF, MacGlashan DW, Jr., Poulsen LK, Gibbs BF. Diagnostic tests based on human basophils: potentials, pitfalls and perspectives. Int Arch Allergy Immunol 2006; 141(1):79–90.

    Article  PubMed  Google Scholar 

  66. Erdmann SM, Heussen N, Moll-Slodowy S, Merk HF, Sachs B. CD63 expression on basophils as a tool for the diagnosis of pollen-associated food allergy: sensitivity and specificity. Clin Exp Allergy 2003; 33(5):607–614.

    Article  PubMed  CAS  Google Scholar 

  67. Kahlert H, Cromwell O, Fiebig H. Measurement of basophil-activating capacity of grass pollen allergens, allergoids and hypoallergenic recombinant derivatives by flow cytometry using anti-CD203c. Clin Exp Allergy 2003; 33(9):1266–1272.

    Article  PubMed  CAS  Google Scholar 

  68. Ebo DG, Hagendorens MM, Bridts CH, Schuerwegh AJ, De Clerck LS, Stevens WJ. Flow cytometric analysis of in vitro activated basophils, specific IgE and skin tests in the diagnosis of pollen-associated food allergy. Cytometry B Clin Cytom 2005; 64(1):28–33.

    PubMed  Google Scholar 

  69. Ebo DG, Bridts CH, Stevens WJ. IgE-mediated anaphylaxis from chlorhexidine: diagnostic possibilities. Contact Dermatitis 2006; 55(5):301–302.

    Article  PubMed  Google Scholar 

  70. Ebo DG, Hagendorens MM, Schuerwegh AJ, Beirens LM, Bridts CH, De Clerck LS, et al. Flow-assisted quantification of in vitro activated basophils in the diagnosis of wasp venom allergy and follow-up of wasp venom immunotherapy. Cytometry B Clin Cytom 2007; 72(3):196–203.

    PubMed  CAS  Google Scholar 

  71. Kleine-Tebbe J, Galleani M, Jeep S, Pilz B, Baisch A, Kunkel G. Basophil histamine release in patients with birch pollen hypersensitivity with and without allergic symptoms to fruits. Allergy 1992; 47(6):618–623.

    Article  PubMed  CAS  Google Scholar 

  72. Erdmann SM, Sachs B, Kwiecien R, Moll-Slodowy S, Sauer I, Merk HF. The basophil activation test in wasp venom allergy: sensitivity, specificity and monitoring specific immuno-therapy. Allergy 2004; 59(10):1102–1109.

    Article  PubMed  CAS  Google Scholar 

  73. Platz IJ, Binder M, Marxer A, Lischka G, Valent P, Buhring HJ. Hymenoptera-venom-induced upregulation of the basophil activation marker ecto-nucleotide pyrophosphatase/ phosphodiesterase 3 in sensitized individuals. Int Arch Allergy Immunol 2001; 126(4):335–342.

    Article  PubMed  CAS  Google Scholar 

  74. Kepley CL, Youssef L, Andrews RP, Wilson BS, Oliver JM. Syk deficiency in nonreleaser basophils. J Allergy Clin Immunol 1999; 104(2 Pt 1):279–284.

    Article  PubMed  CAS  Google Scholar 

  75. Kepley CL, Youssef L, Andrews RP, Wilson BS, Oliver JM. Multiple defects in Fc epsilon RI signaling in Syk-deficient nonreleaser basophils and IL-3-induced recovery of Syk expression and secretion. J Immunol 2000; 165(10):5913–5920.

    PubMed  CAS  Google Scholar 

  76. Lavens-Phillips SE, MacGlashan DW, Jr. The tyrosine kinases p53/56lyn and p72syk are differentially expressed at the protein level but not at the messenger RNA level in nonreleasing human basophils. Am J Respir Cell Mol Biol 2000; 23(4):566–571.

    PubMed  CAS  Google Scholar 

  77. Yamaguchi M, Hirai K, Ohta K, Suzuki K, Kitani S, Takaishi T, et al. Nonreleasing basophils convert to releasing basophils by culturing with IL-3. J Allergy Clin Immunol 1996; 97(6):1279–1287.

    Article  PubMed  CAS  Google Scholar 

  78. Kvedariene V, Kamey S, Ryckwaert Y, Rongier M, Bousquet J, Demoly P, et al. Diagnosis of neuromuscular blocking agent hypersensitivity reactions using cytofluorimetric analysis of basophils. Allergy 2006; 61(3):311–315.

    Article  PubMed  CAS  Google Scholar 

  79. Ebo DG, Hagendorens MM, Bridts CH, Schuerwegh AJ, De Clerck LS, Stevens WJ. In vitro allergy diagnosis: should we follow the flow? Clin Exp Allergy 2004; 34(3)332–339.

    Article  PubMed  CAS  Google Scholar 

  80. Ebo DG, Ahrazem O, Lopez-Torrejon G, Bridts CH, Salcedo G, Stevens WJ. Anaphylaxis from Mandarin (Citrus reticulata): Identification of Potential Responsible Allergens. Int Arch Allergy Immunol 2007; 144(1):39–43.

    Article  PubMed  CAS  Google Scholar 

  81. Ebo DG, Schuerwegh A, Stevens WJ. Anaphylaxis to starch. Allergy 2000; 55(11):1098–1099.

    Article  PubMed  CAS  Google Scholar 

  82. Ebo DG, Piel GC, Conraads V, Stevens WJ. IgE-mediated anaphylaxis after first intravenous infusion of cyclosporine. Ann Allergy Asthma Immunol 2001; 87(3):243–245.

    Article  PubMed  CAS  Google Scholar 

  83. Ebo DG, Haine SE, Hagendorens MM, Bridts CH, Conraads VM, Vorlat A, et al. Hypersensitivity to nadroparin calcium: case report and review of the literature. Clin Drug Investig 2004; 24(7):421–426.

    Article  PubMed  Google Scholar 

  84. Ebo DG, Wets RD, Spiessens TK, Bridts CH, Stevens WJ. Flow-assisted diagnosis of anaphylaxis to patent blue. Allergy 2005; 60(5):703–704.

    Article  PubMed  CAS  Google Scholar 

  85. Ebo DG, Goossens S, Opsomer F, Bridts CH, Stevens WJ. Flow-assisted diagnosis of anaphylaxis to hyaluronidase. Allergy 2005; 60(10):1333–1334.

    Article  PubMed  CAS  Google Scholar 

  86. Reininger R, Swoboda I, Bohle B, Hauswirth AW, Valent P, Rumpold H, et al. Characterization of recombinant cat albumin. Clin Exp Allergy 2003; 33(12):1695–1702.

    Article  PubMed  CAS  Google Scholar 

  87. Gronlund H, Bergman T, Sandstrom K, Alvelius G, Reininger R, Verdino P, et al. Formation of disulfide bonds and homodimers of the major cat allergen Fel d 1 equivalent to the natural allergen by expression in Escherichia coli. J Biol Chem 2003; 278(41):40144–40151.

    Article  PubMed  CAS  Google Scholar 

  88. Valent P, Hauswirth AW, Natter S, Sperr WR, Buhring HJ, Valenta R. Assays for measuring in vitro basophil activation induced by recombinant allergens. Methods 2004; 32(3):265–270.

    Article  PubMed  CAS  Google Scholar 

  89. Drew AC, Eusebius NP, Kenins L, de Silva HD, Suphioglu C, Rolland JM, et al. Hypoallergenic variants of the major latex allergen Hev b 6.01 retaining human T lymphocyte reactivity. J Immunol 2004; 173(9):5872–5879.

    PubMed  CAS  Google Scholar 

  90. Ball T, Edstrom W, Mauch L, Schmitt J, Leistler B, Fiebig H, et al. Gain of structure and IgE epitopes by eukaryotic expression of the major Timothy grass pollen allergen, Phl p 1. FEBS J 2005; 272(1):217–227.

    Article  PubMed  CAS  Google Scholar 

  91. Johansson SG, Nopp A, van HM, Olofsson N, Lundahl J, Wehlin L, et al. Passive IgE-sensitization by blood transfusion. Allergy 2005; 60(9):1192–1199.

    Article  PubMed  CAS  Google Scholar 

  92. Shreffler WG, Lencer DA, Bardina L, Sampson HA. IgE and IgG4 epitope mapping by microarray immunoassay reveals the diversity of immune response to the peanut allergen, Ara h 2. J Allergy Clin Immunol 2005; 116(4):893–899.

    Article  PubMed  CAS  Google Scholar 

  93. de Leon MP, Drew AC, Glaspole IN, Suphioglu C, Rolland JM, O'Hehir RE. Functional analysis of cross-reactive immunoglobulin E antibodies: peanut-specific immunoglobulin E sensitizes basophils to tree nut allergens. Clin Exp Allergy 2005; 35(8):1056–1064.

    Article  PubMed  CAS  Google Scholar 

  94. de Leon MP, Drew AC, Glaspole IN, Suphioglu C, O'Hehir RE, Rolland JM. IgE cross-reactivity between the major peanut allergen Ara h 2 and tree nut allergens. Mol Immunol 2007; 44(4):463–471.

    Article  PubMed  CAS  Google Scholar 

  95. Wallowitz ML, Chen RJ, Tzen JT, Teuber SS. Ses i 6, the sesame 11S globulin, can activate basophils and shows cross-reactivity with walnut in vitro. Clin Exp Allergy 2007; 37(6):929–938.

    Article  PubMed  CAS  Google Scholar 

  96. Wedi B, Novacovic V, Koerner M, Kapp A. Chronic urticaria serum induces histamine release, leukotriene production, and basophil CD63 surface expression – inhibitory effects ofanti-inflammatory drugs. J Allergy Clin Immunol 2000; 105(3):552–560.

    Article  PubMed  CAS  Google Scholar 

  97. De SA, Van Den KC, Kasran A, Cadot P, Neyens K, Coorevits L, et al. Detection of basophil-activating IgG autoantibodies in chronic idiopathic urticaria by induction of CD 63. J Allergy Clin Immunol 2005; 116(3):662–667.

    Article  CAS  Google Scholar 

  98. Yasnowsky KM, Dreskin SC, Efaw B, Schoen D, Vedanthan PK, Alam R, et al. Chronic urticaria sera increase basophil CD203c expression. J Allergy Clin Immunol 2006; 117(6):1430–1434.

    Article  PubMed  CAS  Google Scholar 

  99. Hide M, Francis DM, Grattan CE, Hakimi J, Kochan JP, Greaves MW. Autoantibodies against the high-affinity IgE receptor as a cause of histamine release in chronic urticaria. N Engl J Med 1993; 328(22):1599–604.

    Article  PubMed  CAS  Google Scholar 

  100. Perez OD, Nolan GP. Simultaneous measurement of multiple active kinase states using polychromatic flow cytometry. Nat Biotechnol 2002; 20(2):155–162.

    PubMed  CAS  Google Scholar 

  101. Krutzik PO, Irish JM, Nolan GP, Perez OD. Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin Immunol 2004; 110(3):206–221.

    Article  PubMed  CAS  Google Scholar 

  102. Ebo DG, Sainte-Laudy J, Bridts CH, Mertens CH, Hagendorens MM, Schuerwegh AJ, et al. Flow-assisted allergy diagnosis: current applications and future perspectives. Allergy 2006; 61(9):1028–1039.

    Article  PubMed  CAS  Google Scholar 

  103. Paris-Kohler A, Demoly P, Persi L, Lebel B, Bousquet J, Arnoux B. In vitro diagnosis of cypress pollen allergy by using cytofluorimetric analysis of basophils (Basotest). J Allergy Clin Immunol 2000; 105(2 Pt 1):339–345.

    Article  PubMed  CAS  Google Scholar 

  104. Sanz ML, Sanchez G, Gamboa PM, Vila L, Uasuf C, Chazot M, et al. Allergen-induced basophil activation: CD63 cell expression detected by flow cytometry in patients allergic to Dermatophagoides pteronyssinus and Lolium perenne. Clin Exp Allergy 2001; 31(7):1007–1013.

    Article  PubMed  CAS  Google Scholar 

  105. Ebo DG, Lechkar B, Schuerwegh AJ, Bridts CH, De Clerck LS, Stevens WJ. Validation of a two-color flow cytometric assay detecting in vitro basophil activation for the diagnosis of IgE-mediated natural rubber latex allergy. Allergy 2002; 57(8):706–712.

    Article  PubMed  CAS  Google Scholar 

  106. Hemery ML, Arnoux B, Dhivert-Donnadieu H, Rongier M, Barbotte E, Verdier R, et al. Confirmation of the diagnosis of natural rubber latex allergy by the Basotest method. Int Arch Allergy Immunol 2005; 136(1):53–57.

    Article  PubMed  CAS  Google Scholar 

  107. Monneret G, Benoit Y, Debard AL, Gutowski MC, Topenot I, Bienvenu J. Monitoring of basophil activation using CD63 and CCR3 in allergy to muscle relaxant drugs. Clin Immunol 2002; 102(2):192–199.

    Article  PubMed  CAS  Google Scholar 

  108. Sudheer PS, Hall JE, Read GF, Rowbottom AW, Williams PE. Flow cytometric investigation of peri-anaesthetic anaphylaxis using CD63 and CD203c. Anaesthesia 2005; 60(3):251–256.

    Article  PubMed  CAS  Google Scholar 

  109. Sanz ML, Gamboa PM, Antepara I, Uasuf C, Vila L, Garcia-Aviles C, et al. Flow cytometric basophil activation test by detection of CD63 expression in patients with immediate-type reactions to betalactam antibiotics. Clin Exp Allergy 2002; 32(2):277–286.

    Article  PubMed  CAS  Google Scholar 

  110. Torres MJ, Padial A, Mayorga C, Fernandez T, Sanchez-Sabate E, Cornejo-Garcia JA, et al. The diagnostic interpretation of basophil activation test in immediate allergic reactions to betalactams Clin Exp Allergy 2004; 34(11)1768–1775.

    Article  PubMed  CAS  Google Scholar 

  111. Gamboa PM, Sanz ML, Caballero MR, Antepara I, Urrutia I, Jauregui I, et al. Use of CD63 expression as a marker of in vitro basophil activation and leukotriene determination in meta-mizol allergic patients. Allergy 2003; 58(4):312–317.

    Article  PubMed  CAS  Google Scholar 

  112. Gamboa P, Sanz ML, Caballero MR, Urrutia I, Antepara I, Esparza R, et al. The flow-cytometric determination of basophil activation induced by aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) is useful for in vitro diagnosis of the NSAID hypersensitivity syndrome. Clin Exp Allergy 2004; 34(9):1448–1457.

    Article  PubMed  CAS  Google Scholar 

  113. Erdmann SM, Sachs B, Schmidt A, Merk HF, Scheiner O, Moll-Slodowy S, et al. In vitro analysis of birch-pollen-associated food allergy by use of recombinant allergens in the basophil activation test. Int Arch Allergy Immunol 2005; 136(3):230–238.

    Article  PubMed  CAS  Google Scholar 

  114. Ebo DG, Dombrecht EJ, Bridts CH, Aerts NE, de Clerck LS, Stevens WJ. Combined analysis of intracellular signalling and immunophenotype of human peripheral blood basophils by flow cytometry: A proof of concept. Clin Exp Allergy 2007; 37(11):1668–1675.

    Article  PubMed  CAS  Google Scholar 

  115. Aerts NE, Dombrecht EJ, Bridts CH, Hagendorens MM, de Clerck LS, Stevens WJ, Ebo DG. Simultaneous flow cytometric detection of basophil activation marker CD63 and intracellular phosphorylated p38 mitogen-activated protein kinase in birch pollen allergy. Cytometry B Clin Cytom 2008; 76B(1):8–17.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Ebo, D.G., Bridts, C.H. (2009). Flow-Assisted Analysis of Basophils: A Valuable Instrument for In Vitro Allergy Diagnosis. In: Pawankar, R., Holgate, S.T., Rosenwasser, L.J. (eds) Allergy Frontiers: Diagnosis and Health Economics. Allergy Frontiers, vol 4. Springer, Tokyo. https://doi.org/10.1007/978-4-431-98349-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-98349-1_11

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-98293-7

  • Online ISBN: 978-4-431-98349-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics