Skip to main content

Quantification of Myocardial Blood Flow Using Rubidium-82 PET

  • Conference paper
Molecular Imaging for Integrated Medical Therapy and Drug Development

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yoshinaga K, Chow BJ, de Kemp RA et al (2005) Application of cardiac molecular imaging using positron emission tomography in evaluation of drug and therapeutics for cardiovascular disorders. Curr Pharm Des 11: 903–932

    Article  CAS  PubMed  Google Scholar 

  2. Yoshinaga K, Chow BJ, Williams K et al (2006) What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol 48: 1029–1039

    Article  PubMed  Google Scholar 

  3. Camici PG, Crea F (2007) Coronary microvascular dysfunction. N Engl J Med 356: 830–840

    Article  CAS  PubMed  Google Scholar 

  4. deKemp RA, Yoshinaga K, Beanlands RS (2007) Will three-dimensional PET-CT enable the routine quantification of myocardial blood flow? J Nucl Cardiol 14: 380–397

    Article  PubMed  Google Scholar 

  5. Hachamovitch R, Di Carli MF (2008) Methods and limitations of assessing new noninvasive tests: part I: Anatomy-based validation of noninvasive testing. Circulation 117: 2684–2690

    Article  PubMed  Google Scholar 

  6. Knuuti J, Bengel FM (2008) Positron emission tomography and molecular imaging. Heart 94: 360–367

    Article  CAS  PubMed  Google Scholar 

  7. Bengel FM, Abletshauser C, Neverve J et al (2005) Effects of nateglinide on myocardial microvascular reactivity in type 2 diabetes mellitus-a randomized study using positron emission tomography. Diabet Med 22: 158–163

    Article  CAS  PubMed  Google Scholar 

  8. Di Carli MF, Tobes MC, Mangner T et al (1997) Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med 336: 1208–1215

    Article  PubMed  Google Scholar 

  9. Machac J (2005) Cardiac positron emission tomography imaging. Semin Nucl Med 35: 17–36

    Article  PubMed  Google Scholar 

  10. Yoshinaga K, Tamaki N, Ruddy T et al (2009) Evaluation of myocardial perfusion. In: Wahl R (ed) Principles and practice of PET and PET/CT, 2nd edn. Lippincott Williams and Wilkins, Philadelphia, PA, pp 541–564

    Google Scholar 

  11. Bateman TM, Heller GV, McGhie AI et al (2006) Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 13: 24–33

    Article  PubMed  Google Scholar 

  12. Beanlands RS, Chow BJ, Dick A et al (2007) CCS/CAR/CANM/CNCS/CanSCMR joint position statement on advanced noninvasive cardiac imaging using positron emission tomography, magnetic resonance imaging and multidetector computed tomographic angiography in the diagnosis and evaluation of ischemic heart disease-executive summary. Can J Cardiol 23: 107–119

    CAS  PubMed  Google Scholar 

  13. Sampson UK, Dorbala S, Limaye A et al (2007) Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol 49: 1052–1058

    Article  CAS  PubMed  Google Scholar 

  14. Lertsburapa K, Ahlberg AW, Bateman TM et al (2008) Independent and incremental prognostic value of left ventricular ejection fraction determined by stress gated rubidium 82 PET imaging in patients with known or suspected coronary artery disease. J Nucl Cardiol 15: 745–753

    PubMed  Google Scholar 

  15. Lortie M, Beanlands RS, Yoshinaga K et al (2007) Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 34: 1765–1774

    Article  PubMed  Google Scholar 

  16. Manabe O, Yoshinaga K, Katoh C et al (2009) Repeatability of rest and hyperemic myocardial blood flow measurements with Rb-82 dynamic PET. J Nucl Med 50: 68–71

    Article  PubMed  Google Scholar 

  17. Yoshida K, Mullani N, Gould KL (1996) Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med 37: 1701–1712

    CAS  PubMed  Google Scholar 

  18. Yoshinaga K, Beanlands RS, Dekemp RA et al (2006) Effect of exercise training on myocardial blood flow in patients with stable coronary artery disease. Am Heart J 151: 1324 e11–1328

    Article  Google Scholar 

  19. Naya M, Tsukamoto T, Morita K et al (2007) Olmesartan, but not amlodipine, improves endothelium-dependent coronary dilation in hypertensive patients. J Am Coll Cardiol 50: 1144–1149

    Article  CAS  PubMed  Google Scholar 

  20. Siegrist PT, Gaemperli O, Koepfli P et al (2006) Repeatability of cold pressor test-induced flow increase assessed with H(2)(15)O and PET. J Nucl Med 47: 1420–1426

    PubMed  Google Scholar 

  21. Yoshinaga K, Katoh C, Noriyasu K et al (2003) Reduction of coronary flow reserve in areas with and without ischemia on stress perfusion imaging in patients with coronary artery disease: a study using oxygen 15-labeled water PET. J Nucl Cardiol 10: 275–283

    Article  PubMed  Google Scholar 

  22. Furuyama H, Odagawa Y, Katoh C et al (2002) Assessment of coronary function in children with a history of Kawasaki disease using (15)O-water positron emission tomography. Circulation 105: 2878–2884

    Article  PubMed  Google Scholar 

  23. Katoh C, Morita K, Shiga T et al (2004) Improvement of algorithm for quantification of regional myocardial blood flow using 15O-water with PET. J Nucl Med 45: 1908–1916

    PubMed  Google Scholar 

  24. Campisi R, Czernin J, Schoder H et al (1998) Effects of long-term smoking on myocardial blood flow, coronary vasomotion, and vasodilator capacity. Circulation 98: 119–125

    CAS  PubMed  Google Scholar 

  25. Czernin J, Muller P, Chan S et al (1993) Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 88: 62–69

    CAS  PubMed  Google Scholar 

  26. Marwick TH, Go RT, MacIntyre WJ et al (1991) Myocardial perfusion imaging with positron emission tomography and single photon emission computed tomography: frequency and causes of disparate results. Eur Heart J 12: 1064–1069

    CAS  PubMed  Google Scholar 

  27. Tamaki N, Ruddy TD, deKemp RA et al (2002) Myocardial perfusion. In: Wahl R (ed) Principles and practice of positron emission tomography. Lippincott Williams and Wilkins, Philadelphia, PA, pp 320–333

    Google Scholar 

  28. Chow BJ, Wong JW, Yoshinaga K et al (2005) Prognostic significance of dipyridamole-induced ST depression in patients with normal 82Rb PET myocardial perfusion imaging. J Nucl Med 46: 1095–1101

    PubMed  Google Scholar 

  29. Marwick TH, Shan K, Go RT et al (1995) Use of positron emission tomography for prediction of perioperative and late cardiac events before vascular surgery. Am Heart J 130: 1196–1202

    Article  CAS  PubMed  Google Scholar 

  30. deKemp RA, Ruddy TD, Hewitt T et al (2000) Detection of serial changes in absolute myocardial perfusion with 82Rb PET. J Nucl Med 41: 1426–1435

    CAS  PubMed  Google Scholar 

  31. Parkash R, deKemp RA, Ruddy Td T et al (2004) Potential utility of rubidium 82 PET quantification in patients with three-vessel coronary artery disease. J Nucl Cardiol 11: 440–449

    Article  CAS  PubMed  Google Scholar 

  32. Anagnostopoulos C, Almonacid A, El Fakhri G et al (2008) Quantitative relationship between coronary vasodilator reserve assessed by 82Rb PET imaging and coronary artery stenosis severity. Eur J Nucl Med Mol Imaging 35: 1593–1601

    Article  PubMed  Google Scholar 

  33. Iida H, Kanno I, Takahashi A et al (1988) Measurement of absolute myocardial blood flow with H215O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect. Circulation 78: 104–115

    CAS  PubMed  Google Scholar 

  34. Iwado Y, Yoshinaga K, Furuyama H et al (2002) Decreased endothelium-dependent coronary vasomotion in healthy young smokers. Eur J Nucl Med Mol Imaging 29: 984–990

    Article  CAS  PubMed  Google Scholar 

  35. Morita K, Tsukamoto T, Naya M et al (2006) Smoking cessation normalizes coronary endothelial vasomotor response assessed with 15O-water and PET in healthy young smokers. J Nucl Med 47: 1914–1920

    CAS  PubMed  Google Scholar 

  36. Prior JO, Quinones MJ, Hernandez-Pampaloni M et al (2005) Coronary circulatory dysfunction in insulin resistance, impaired glucose tolerance, and type 2 diabetes mellitus. Circulation 111: 2291–2298

    Article  CAS  PubMed  Google Scholar 

  37. Schindler TH, Nitzsche EU, Schelbert HR et al (2005) Positron emission tomography-measured abnormal responses of myocardial blood flow to sympathetic stimulation are associated with the risk of developing cardiovascular events. J Am Coll Cardiol 45: 1505–1512

    Article  PubMed  Google Scholar 

  38. Huang SC, Williams BA, Krivokapich J et al (1989) Rabbit myocardial 82Rb kinetics and a compartmental model for blood flow estimation. Am J Physiol 256: H1156–1164

    CAS  PubMed  Google Scholar 

  39. Lin JW, Sciacca RR, Chou RL et al (2001) Quantification of myocardial perfusion in human subjects using 82Rb and wavelet-based noise reduction. J Nucl Med 42: 201–208

    CAS  PubMed  Google Scholar 

  40. Wassenaar R, Beanlands R, Ruddy T et al (2002) Three dimensional cardiac positron emission tomography. Res Adv Nucl Med 1: 51–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this paper

Cite this paper

Yoshinaga, K. et al. (2010). Quantification of Myocardial Blood Flow Using Rubidium-82 PET. In: Tamaki, N., Kuge, Y. (eds) Molecular Imaging for Integrated Medical Therapy and Drug Development. Springer, Tokyo. https://doi.org/10.1007/978-4-431-98074-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-98074-2_9

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-98073-5

  • Online ISBN: 978-4-431-98074-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics