Skip to main content

Molecular and Functional Imaging for Drug Development and Elucidation of Disease Mechanisms Using Positron Emission Tomography (PET)

  • Conference paper

Abstract

Tohoku University has a more than 30-year-long history of molecular and functional imaging research using radiopharmaceuticals. This article provides a brief overview of various achievements in molecular and functional imaging at Tohoku University. It is noteworthy that many of these early studies were associated with positron emission tomography (PET) studies in oncology and neuroscience. Later, new application to spoils sciences was initiated, and PET and [18F]fluorodeoxyglucose ([18F]FDG) has been used for exercise physiology and psychology studies. This technique, similar to the performance of autoradiography, allows subjects to be scanned just after carrying out exercise tasks. We have observed the metabolic effects of exercise on brain and skeletal muscles.

One of the important contributions we have made in neuroscience has been associated with the histaminergic neuronal system in the brain. The histaminergic system is associated with various autonomic functions such as the sleep-wake cycle and appetite control. Using PET and [11C]doxepin. a ligand for histamine H1 receptors, various studies have been concluded regarding physiological changes such as those occurring in aging, and pathological changes such as those occurring in Alzheimer’s disease (AD), depression, schizophrenia, and anorexia nervosa. In addition, PET and [11C]doxepin has also been used for the evaluation of side effects due to histamine H1 receptor antagonists (antihistamines). Antihistamines are frequently used for the treatment of allergic disorders such as seasonal rhinitis, but these drugs can induce sedative side effects that can sometimes result in serious traffic accidents. Objective measurement of the sedative property of antihistamines was established using histamine H1 receptor occupancy as a reliable index. Our additional functional imaging studies using [18F]FDG and [15O]H2O have revealed the brain mechanisms of these sedative side effects in the brains of allergic patients.

Finally, we have been involved in the development of novel tracers for amyloid deposits in the brains of patients with AD and mild cognitive disorder. We have been conducting clinical studies of an 11C-labelled tracer. [11C]2-(2-[2-dimethyl-aminothiazol-5-yl]ethenyl)-6-(2-[fluoro]ethoxy)benzoxazole (BF-227). Our early evaluation has demonstrated that [11C]BF-227 is a promising tracer for the differentiation of aged normal volunteers and AD patients. In future. PET will undoubtedly be used more frequently in drug development and for the early diagnosis of various diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fukuda H, Matsuzawa T, Abe Y et al (1982) Experimental study for cancer diagnosis with positron-labeled fluorinated glucose analogs: [18F]-2-fluoro-2-deoxy-D-mannose: a new tracer for cancer detection. Eur J Nucl Med 7: 294–297

    CAS  PubMed  Google Scholar 

  2. Kubota K, Ito M, Fukuda H et al (1983) Cancer diagnosis with positron computed tomography and carbon-11-labelled L-methionine. Lancet 2: 1192

    Article  CAS  PubMed  Google Scholar 

  3. Fukuda H, Matsuzawa T, Tada M et al (1986) 2-Deoxy-2-[18F]fluoro-D-galactose: a new tracer for the measurement of galactose metabolism in the liver by positron emission tomography. Eur J Nucl Med 11: 444–448

    CAS  PubMed  Google Scholar 

  4. Suzuki M, Yamaguchi K, Honda G et al (2005) An experimental study on O-[18F]fluoro-methyl-L-tyrosine for differentiation between tumor and inflammatory tissues. Ann Nucl Med 19: 589–595

    Article  CAS  PubMed  Google Scholar 

  5. Kaneta T, Takai Y, Iwata R et al (2007) Initial evaluation of dynamic human imaging using 18F-FRP170 as a new PET tracer for imaging hypoxia. Ann Nucl Med 21: 101–107

    Article  CAS  PubMed  Google Scholar 

  6. Nagasawa H, Kogure K, Ido T (1993) Simultaneous demonstration of neurotransmitter and receptor systems of the rat brain using in vivo double autoradiography. Tohoku J Exp Med 169: 87–89

    Article  CAS  PubMed  Google Scholar 

  7. Meguro K, Yamaguchi S, Itoh M et al (1997) Striatal dopamine metabolism correlated with frontotemporal glucose utilization in Alzheimer’s disease: a double-tracer PET study. Neurology 49:941–945

    CAS  PubMed  Google Scholar 

  8. Nakajima T, Nimura T, Yamaguchi K et al (2003) The impact of stereotactic pallidal surgery on the dopamine D2 receptor in Parkinson disease: a positron emission tomography study. J Neurosurg 98: 57–63

    Article  CAS  PubMed  Google Scholar 

  9. Ono S, Kawashima R, Ito H et al (1996) Regional distribution of the muscarinic cholinergic receptor in the human brain studied with 11C-benztropine and PET using an anatomical standardization technique (in Japanese). Kaku Igaku (The Japanese Journal of Nuclear Medicine) 33: 721–727

    CAS  Google Scholar 

  10. Yanai K, Watanabe T, Yokoyama H et al (1992) Histamine H1 receptors in human brain visualized in vivo by [11C]doxepin and positron emission tomography. Neurosci Lett 137: 145–148

    Article  CAS  PubMed  Google Scholar 

  11. Tashiro M, Ota H, Fujimoto T et al (1998) Functional analysis of runner’s brain by 18F-FDG and PET during field running. In: Nose H, Nadel E, Morimoto T (eds) The 1997 Nagano Symposium on Sports Sciences., Cooper Publishing, Carmel, USA, pp 178–184

    Google Scholar 

  12. Jeong M, Tashiro M, Singh LN et al (2006) Functional brain mapping of actual car-driving using [18F]FDG-PET. Ann Nucl Med 20: 623–628

    Article  PubMed  Google Scholar 

  13. Kudo Y, Okamura N. Furumoto S et al (2007) 2-(2-[2-Dimethylaminothiazol-5-yl]ethenyl)-6-(2-[fluoro]ethoxy)benzoxazole: a novel PET agent for in vivo detection of dense amyloid plaques in Alzheimer’s disease patients. J Nucl Med 48: 553–561

    Article  CAS  PubMed  Google Scholar 

  14. Okamura N, Funaki Y, Tashiro M et al In vivo visualization of donepezil binding in the brain of patients with Alzheimer’s disease. Br J Clin Pharmacol (in press)

    Google Scholar 

  15. Tashiro M, Itoh M, Fujimoto T et al (2008) Application of positron emission tomography to neuroimaging in sports sciences. Methods 45: 300–306

    Article  CAS  PubMed  Google Scholar 

  16. Fujimoto T, Itoh M, Kumano H et al (1996) Whole-body metabolic map with positron emission tomography of a man after running. Lancet 348: 266

    Article  CAS  PubMed  Google Scholar 

  17. Iemitsu M, Itoh M, Fujimoto T et al (2001) Regional cardiac glucose metabolism during running measured by 3D positron emission tomography in humans. Advances in Exercise and Sports Physiology 7: 53–58

    Google Scholar 

  18. Reivich M, Sokoloff L, Shapiro H et al (1974) Validation of an autoradiographic method for the determination of the rates of local cerebral glucose utilization. Trans Am Neurol Assoc 99: 238–240

    CAS  PubMed  Google Scholar 

  19. Schwartzman RJ, Greenberg J, Revich M et al (1981) Functional metabolic mapping of a conditioned motor task in primates utilizing 2-[14C]deoxyglucose. Exp Neurol 72: 153–163

    Article  CAS  PubMed  Google Scholar 

  20. Sharp FR (1976) Relative cerebral glucose uptake of neuronal perikarya and neuropil determined with 2-deoxyglucose in resting and swimming rat. Brain Res 110: 127–139

    Article  CAS  PubMed  Google Scholar 

  21. Herholz K, Buskies W, Rist M et al (1987) Regional cerebral blood flow in man at rest and during exercise. J Neurol 234: 9–13

    Article  CAS  PubMed  Google Scholar 

  22. Fink GR, Adams L, Watson JD et al (1995) Hyperpnoea during and immediately after exercise in man: evidence of motor cortical involvement. J Physiol 489: 663–675

    CAS  PubMed  Google Scholar 

  23. Mishina M, Senda M, Ishii K et al (1999) Cerebellar activation during ataxic gait in olivo-pontocerebellar atrophy: a PET study. Acta Neurol Scand 100: 369–376

    Article  CAS  PubMed  Google Scholar 

  24. Tashiro M, Itoh M, Fujimoto T et al (2001) 18F-FDG PET mapping of regional brain activity in runners. J Sports Med Phys Fitness 41: 11–17

    CAS  PubMed  Google Scholar 

  25. Kemppainen J, Aalto S, Fujimoto T et al (2005) High intensity exercise decreases global brain glucose uptake in humans. J Physiol 568: 323–332

    Article  CAS  PubMed  Google Scholar 

  26. Baxter LR (1990) Brain imaging as a tool in establishing a theory of brain pathology in obsessive compulsive disorder. J Clin Psychiatry 51 (Suppl):22–25; discussion 26

    PubMed  Google Scholar 

  27. Perani D, Colombo C, Bressi S et al (1995) [18F]FDG PET study in obsessive-compulsive disorder. A clinical/metabolic correlation study after treatment. Br J Psychiatry 166: 244–250

    Article  CAS  PubMed  Google Scholar 

  28. Boecker H, Sprenger T, Spilker ME et al (2008) The runner’s high: opioidergic mechanisms in the human brain. Cereb Cortex 18: 2523–2531

    Article  PubMed  Google Scholar 

  29. Dietrich A, Sparling PB (2004) Endurance exercise selectively impairs prefrontal-dependent cognition. Brain Cogn 55: 516–524

    Article  PubMed  Google Scholar 

  30. Dietrich A (2006) Transient hypofrontality as a mechanism for the psychological effects of exercise. Psychiatry Res 145: 79–83

    Article  PubMed  Google Scholar 

  31. Tashiro M, Kubota K, Itoh M et al (1999) Hypometabolism in the limbic system of cancer patients observed by positron emission tomography. Psychooncology 8: 283–286

    Article  CAS  PubMed  Google Scholar 

  32. Tashiro M, Juengling FD, Reinhardt MJ et al (2000) Reproducibility of PET brain mapping of cancer patients. Psychooncology 9: 157–163

    Article  CAS  PubMed  Google Scholar 

  33. Tashiro M, Juengling FD, Reinhardt MJ et al (2001) Depressive state and regional cerebral activity in cancer patients—a preliminary study. Med Sci Monit 7: 687–695

    CAS  PubMed  Google Scholar 

  34. Matsuda T, Takayama T, Tashiro M et al (2005) Mild cognitive impairment after adjuvant chemotherapy in breast cancer patients—evaluation of appropriate research design and methodology to measure symptoms. Breast Cancer 12: 279–287

    Article  PubMed  Google Scholar 

  35. Yanai K, Tashiro M (2007) The physiological and pathophysiological roles of neuronal histamine: an insight from human positron emission tomography studies. Pharmacol Ther 113: 1–15

    Article  CAS  PubMed  Google Scholar 

  36. Iwabuchi K, Ito C, Tashiro M et al (2005) Histamine H1 receptors in schizophrenic patients measured by positron emission tomography. Eur Neuropsychopharmacol 15: 185–191

    Article  CAS  PubMed  Google Scholar 

  37. Kano M, Fukudo S, Tashiro A et al (2004) Decreased histamine H1 receptor binding in the brain of depressed patients. Eur J Neurosci 20: 803–810

    Article  PubMed  Google Scholar 

  38. Yoshizawa M, Tashiro M. Fukudo S et al (2008) Increased brain histamine H1 receptor binding in patients with anorexia nervosa. Biol Psychiatry

    Google Scholar 

  39. Higuchi M, Yanai K, Okamura N et al (2000) Histamine H(1) receptors in patients with Alzheimer’s disease assessed by positron emission tomography. Neuroscience 99: 721–729

    Article  CAS  PubMed  Google Scholar 

  40. Tashiro M, Duan X, Kato M et al (2008) Brain histamine H1 receptor occupancy of orally administered antihistamines, bepotastine and diphenhydramine, measured by PET with 11C-doxepin. Br J Clin Pharmacol 65: 811–821

    Article  CAS  PubMed  Google Scholar 

  41. Tashiro M, Sakurada Y, Iwabuchi K et al (2004) Central effects of fexofenadine and cetirizine: measurement of psychomotor performance, subjective sleepiness, and brain histamine H1-receptor occupancy using 11C-doxepin positron emission tomography. J Clin Pharmacol 44: 890–900

    Article  CAS  PubMed  Google Scholar 

  42. Tashiro M, Sakurada Y, Mochizuki H et al (2008) Effects of a sedative antihistamine, D-chlorpheniramine, on regional cerebral perfusion and performance during simulated car driving. Hum Psychopharmacol 23: 139–150

    Article  CAS  PubMed  Google Scholar 

  43. Goldman WP, Price JL, Storandt M et al (2001) Absence of cognitive impairment or decline in preclinical Alzheimer’s disease. Neurology 56: 361–367

    CAS  PubMed  Google Scholar 

  44. Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45: 358–368

    Article  CAS  PubMed  Google Scholar 

  45. Aisen PS (2005) The development of anti-amyloid therapy for Alzheimer’s disease: from secretase modulators to polymerisation inhibitors. CNS Drugs 19: 989–996

    Article  CAS  PubMed  Google Scholar 

  46. Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55: 306–319

    Article  CAS  PubMed  Google Scholar 

  47. Price JC, Klunk WE, Lopresti BJ et al (2005) Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 25: 1528–1547

    Article  CAS  PubMed  Google Scholar 

  48. Lopresti BJ, Klunk WE, Mathis CA et al (2005) Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med 46: 1959–1972

    CAS  PubMed  Google Scholar 

  49. Okamura N, Suemoto T, Shimadzu H et al. (2004) Styrylbenzoxazole derivatives for in vivo imaging of amyloid plaques in the brain. J Neurosci 24: 2535–2541

    Article  CAS  PubMed  Google Scholar 

  50. Okamura N, Suemoto T, Shiomitsu T et al (2004) A novel imaging probe for in vivo detection of neuritic and diffuse amyloid plaques in the brain. J Mol Neurosci 24: 247–255

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this paper

Cite this paper

Tashiro, M., Fujimoto, T., Okamura, N., Iwata, R., Fukuda, H., Yanai, K. (2010). Molecular and Functional Imaging for Drug Development and Elucidation of Disease Mechanisms Using Positron Emission Tomography (PET). In: Tamaki, N., Kuge, Y. (eds) Molecular Imaging for Integrated Medical Therapy and Drug Development. Springer, Tokyo. https://doi.org/10.1007/978-4-431-98074-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-98074-2_23

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-98073-5

  • Online ISBN: 978-4-431-98074-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics