Skip to main content

Abstract

Tumor hypoxia, or the condition of low oxygen, is a key factor for tumor progression and treatment resistance. Because hypoxic tumor cells are more resistant to ionizing radiation, hypoxia has been a focus of clinical research in radiation therapy for half a century. During this period, interest in targeting tumor hypoxia has waxed and waned as promising treatments emerged from the laboratory, only to fail in the clinics. With the development of new radiation targeting strategies, specifically intensity-modulated radiotherapy (IMRT) and image guidance technologies (image-guided RT; IGRT), there is a strong interest in imaging hypoxia for radiation targeting and dose escalation. In this review, we will discuss the role of hypoxia imaging, specifically positron emission tomography (PET)-based imaging with hypoxia-specific tracers, for directing radiation treatment in solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58: 1408–1416

    CAS  PubMed  Google Scholar 

  2. Thomlinson RH, Gray LH ( 1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9: 539–549

    CAS  PubMed  Google Scholar 

  3. Trotter MJ, Chaplin DJ, Durand RE et al (1989) The use of fluorescent probes to identify regions of transient perfusion in murine tumors. Int J Radiat Oncol Biol Phys 16: 931–934

    CAS  PubMed  Google Scholar 

  4. Gray LH, Conger AD, Ebert M et al (1953) Concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26: 638–648

    Article  CAS  PubMed  Google Scholar 

  5. Hall EA (2000) Radiobiology for the radiobiologist, 5th edn. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  6. Pallavicini MG, Laland ME, Miller RG et al (1979) Cell-cycle distribution of chronically hypoxic cells and determination of the clonogenic potential of cells accumulated in G2-M phases after irradiation of a solid tumor. Cancer Res 39: 1891–1897

    CAS  PubMed  Google Scholar 

  7. Shen J, Hughes C, Chao C et al (1987) Coinduction of glucose-regulated proteins and doxorubicin resistance in Chinese hamster cells. Proc Natl Acad Sci USA 84: 3278–3282

    Article  CAS  PubMed  Google Scholar 

  8. Hughes CS, Shen JW, Subjeck JR (1989) Resistance to etoposide induced by three glucose-regulated stresses in Chinese hamster ovary cells. Cancer Res 49: 4452–4454

    CAS  PubMed  Google Scholar 

  9. Murphy BJ, Laderoute KR, Chin RJ et al (1994) Metallothionein IIA is up-regulated by hypoxia in human A431 squamous carcinoma cells. Cancer Res 54: 5808–5810

    CAS  PubMed  Google Scholar 

  10. Graeber TG, Osmanian C, Jacks T et al (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379: 88–91

    Article  CAS  PubMed  Google Scholar 

  11. Koch WM, Brennan JA, Zahurak M et al (1996) p53 mutation and locoregional treatment failure in head and neck squamous cell carcinoma. J Natl Cancer Inst 88: 1580–1586

    Article  CAS  PubMed  Google Scholar 

  12. Denko NC, Fontana LA, Hudson KM et al (2003) Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22: 5907–5914

    Article  CAS  PubMed  Google Scholar 

  13. Le QT, Denko NC, Giaccia AJ (2004) Hypoxic gene expression and metastasis. Cancer Metastasis Rev 23: 293–310

    Article  CAS  PubMed  Google Scholar 

  14. Erler JT, Bennewith KL, Nicolau M et al (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440: 1222–1226

    Article  CAS  PubMed  Google Scholar 

  15. Erler JT, Bennewith KL, Cox TR et al (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15: 35–44

    Article  CAS  PubMed  Google Scholar 

  16. Overgaard J (2007) Hypoxic radiosensitization: adored and ignored. J Clin Oncol 25: 4066–4074

    Article  PubMed  Google Scholar 

  17. Krohn KA, Link JM, Mason RP (2008) Molecular imaging of hypoxia. J Nucl Med 49(Suppl 2):129S–148S

    Article  CAS  PubMed  Google Scholar 

  18. Le QT, Courter D (2008) Clinical biomarkers for hypoxia targeting. Cancer Metastasis Rev 27: 351–362

    Article  CAS  PubMed  Google Scholar 

  19. Tatum JL, Kelloff GJ, Gillies RJ et al (2006) Hypoxia: importance in tumor biology, non-invasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 82: 699–757

    Article  CAS  PubMed  Google Scholar 

  20. Gagel B, Reinartz P, Dimartino E et al (2004) PO2 polarography versus positron emission tomography ([(18)F] fluoromisonidazole, [(18)F]-2-fluoro-2′-deoxyglucose). An appraisal of radiotherapeutically relevant hypoxia. Strahlenther Onkol 180: 616–622

    Article  PubMed  Google Scholar 

  21. Gagel B, Piroth M, Pinkawa M et al (2007) PO2 polarography, contrast enhanced color duplex sonography (CDS), [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography: validated methods for the evaluation of therapy-relevant tumor oxygenation or only bricks in the puzzle of tumor hypoxia? BMC Cancer 7: 113–122

    Article  PubMed  Google Scholar 

  22. Bentzen L, Keiding S, Nordsmark M et al (2003) Tumour oxygenation assessed by 18F-fluoromisonidazole PET and polarographic needle electrodes in human soft tissue tumours. Radiother Oncol 67: 339–344

    Article  CAS  PubMed  Google Scholar 

  23. Grigsby PW, Malyapa RS, Higashikubo R et al (2007) Comparison of molecular markers of hypoxia and imaging with (60)Cu-ATSM in cancer of the uterine cervix. Mol Imaging Biol 9: 278–283

    Article  PubMed  Google Scholar 

  24. Hu M, Yu JM, Sun X et al (2008) The valuation of [18F] FETNIM PET/CT imaging for detecting tumor hypoxia in non-small cell lung cancer. J Clin Oncol 26: abstract 7504

    Google Scholar 

  25. Cherk MH, Foo SS, Poon AM et al (2006) Lack of correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in non-small cell lung cancer assessed by 18F-fluoromisonidazole and 18F-FDG PET. J Nucl Med 47: 1921–1926

    CAS  PubMed  Google Scholar 

  26. Lee ST, Scott AM (2007) Hypoxia positron emission tomography imaging with 18F-fluoromisonidazole. Semin Nucl Med 37: 451–461

    Article  PubMed  Google Scholar 

  27. Rajendran JG, Schwartz DL, O’Sullivan J et al (2006) Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res 12: 5435–5441

    Article  CAS  PubMed  Google Scholar 

  28. Thorwarth D, Eschmann SM, Holzner F et al (2006) Combined uptake of [18F] FDG and [18F] FMISO correlates with radiation therapy outcome in head-and-neck cancer patients. Radiother Oncol 80: 151–156

    Article  CAS  PubMed  Google Scholar 

  29. Hicks RJ, Rischin D, Fisher R et al (2005) Utility of FMISO PET in advanced head and neck cancer treated with chemoradiation incorporating a hypoxia-targeting chemotherapy agent. Eur J Nucl Med Mol Imaging 32: 1384–1391

    Article  PubMed  Google Scholar 

  30. Rischin D, Hicks RJ, Fisher R et al (2006) Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 24: 2098–2104

    Article  PubMed  Google Scholar 

  31. Cher LM, Murone C, Lawrentschuk N et al (2006) Correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in gliomas using 18F-fluoromisonidazole, 18F-FDG PET, and immunohistochemical studies. J Nucl Med 47: 410–418

    CAS  PubMed  Google Scholar 

  32. Eschmann SM, Paulsen F, Reimold M et al (2005) Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med 46: 253–260

    PubMed  Google Scholar 

  33. Lee N, Nehmeh S, Schoder H et al (2009) Prospective trial incorporating pre-/mid-treatment [(18)F]-misonidazole positron emission tomography for head-and-neck cancer patients under-going concurrent chemoradiotherapy. Int J Radiat Oncol Biol Phys; e-published before print version

    Google Scholar 

  34. Dehdashti F, Mintun MA, Lewis JS et al (2003) In vivo assessment of tumor hypoxia in lung cancer with (60)Cu-ATSM. Eur J Nucl Med Mol Imaging 30: 844–850

    CAS  PubMed  Google Scholar 

  35. Dietz DW, Dehdashti F, Grigsby PW et al (2008) Tumor hypoxia detected by positron emission tomography with 60Cu-ATSM as a predictor of response and survival in patients under-going neoadjuvant chemoradiotherapy for rectal carcinoma: a pilot study. Dis Colon Rectum 51: 1641–1648

    Article  PubMed  Google Scholar 

  36. Komar G, Seppanen M, Eskola O et al (2008) 18F-EF5: a new PET tracer for imaging hypoxia in head and neck cancer. J Nucl Med 49: 1944–1951

    Article  PubMed  Google Scholar 

  37. Evans SM, Fraker D, Hahn SM et al (2006) EF5 binding and clinical outcome in human soft tissue sarcomas. Int J Radiat Oncol Biol Phys 64: 922–927

    CAS  PubMed  Google Scholar 

  38. Evans SM, Judy KD, Dunphy I et al (2004) Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res 10: 8177–8184

    Article  CAS  PubMed  Google Scholar 

  39. Evans SM, Du KL, Chalian AA et al (2007) Patterns and levels of hypoxia in head and neck squamous cell carcinomas and their relationship to patient outcome. Int J Radiat Oncol Biol Phys 69: 1024–1031

    PubMed  Google Scholar 

  40. Lee NY, Mechalakos JG, Nehmeh S et al (2007) Fluorine-18-labeled fluoromisonidazole positron emission and computed tomography-guided intensity-modulated radiotherapy for head and neck cancer: a feasibility study. Int J Radiat Oncol Biol Phys 70: 2–13

    PubMed  Google Scholar 

  41. Thorwarth D, Eschmann SM, Paulsen F et al (2007) Hypoxia dose painting by numbers: a planning study. Int J Radiat Oncol Biol Phys 68: 291–300

    PubMed  Google Scholar 

  42. Grosu AL, Souvatzoglou M, Roper B et al (2007) Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys 69: 541–551

    CAS  PubMed  Google Scholar 

  43. Dewhirst MW, Braun RD, Lanzen JL (1998) Temporal changes in PO2 of R3230AC tumors in Fischer-344 rats. Int J Radiat Oncol Biol Phys 42: 723–726

    CAS  PubMed  Google Scholar 

  44. Raleigh JA, Chou SC, Arteel GE et al (1999) Comparisons among pimonidazole binding, oxygen electrode measurements, and radiation response in C3H mouse tumors. Radiat Res 151: 580–589

    Article  CAS  PubMed  Google Scholar 

  45. Evans SM, Koch CJ (2003) Prognostic significance of tumor oxygenation in humans. Cancer Lett 195: 1–16

    Article  CAS  PubMed  Google Scholar 

  46. Nehmeh SA, Lee NY, Schroder H et al (2008) Reproducibility of intratumor distribution of (18)F-fluoromisonidazole in head and neck cancer. Int J Radiat Oncol Biol Phys 70: 235–242

    CAS  PubMed  Google Scholar 

  47. Lin Z, Mechalakos J, Nehmeh S et al (2008) The influence of changes in tumor hypoxia on dose-painting treatment plans based on 18F-FMISO positron emission tomography. Int J Radiat Oncol Biol Phys 70: 1219–1228

    PubMed  Google Scholar 

  48. Baumann P, Nyman J, Lax I et al (2006) Factors important for efficacy of stereotactic body radiotherapy of medically inoperable stage I lung cancer. A retrospective analysis of patients treated in the Nordic countries. Acta Oncol 45: 787–795

    Article  PubMed  Google Scholar 

  49. Koto M, Takai Y, Ogawa Y et al (2007) A phase II study on stereotactic body radiotherapy for stage I non-small cell lung cancer. Radiother Oncol 85: 429–434

    Article  PubMed  Google Scholar 

  50. Goodman KA, Sneed PK, McDermott MW et al (2001) Relationship between pattern of enhancement and local control of brain metastases after radiosurgery. Int J Radiat Oncol Biol Phys 50: 139–146

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this paper

Cite this paper

Le, QT., Loo, B.W., Lee, N. (2010). Hypoxia Imaging for Image-Guided Radiotherapy. In: Tamaki, N., Kuge, Y. (eds) Molecular Imaging for Integrated Medical Therapy and Drug Development. Springer, Tokyo. https://doi.org/10.1007/978-4-431-98074-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-98074-2_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-98073-5

  • Online ISBN: 978-4-431-98074-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics