Skip to main content

Abstract

Autophagy is a mechanism by which parts of a cell that are old and unneeded are segregated inside structures called “autophagosomes”. The materials ingested by this autophagy are brought to cellular compartments called “lysosomes,” which are specific intracellular compartments for degradation, and the degraded products are re-used for cell metabolism. We have shown that, in mice, deficiency in lysosomal proteinases such as cathepsin D or cathepsins B and L induces the accumulation of lysosomes containing ceroid-lipofuscin; the phenotypes of these mice resemble those of neuronal ceroid lipofuscinosis (NCL). In these mutant mice, the accumulation of abnormal lysosomal structures appears in accordance with an increase in the amount of membrane-bound microtubule associated protein 1 light chain 3 (LC3), a marker of “autophagosomes” in neurons. Such autophagosomes often contain granular osmiophilic deposits, a hallmark of NCL, together with part of the cytoplasm, which contains undigested materials. These data strongly argue for a major involvement of autophagy in the pathogenesis of NCL, although it remains largely unknown what signaling is essential for autophagosome formation.

Neonatal hypoxic/ischemic (H/I) brain injury causes neurological impairment, including cognitive and motor dysfunction. as well as seizures. However, the molecular mechanisms regulating neuron death after H/I injury are poorly defined and remain controversial. Here we show that Atg7, a gene essential for autophagy induction, is a critical mediator of H/I-induced neuron death. Neonatal mice subjected to H/I injury show dramatically increased autophagosome formation and extensive hippocampal neuron death that is regulated by both caspase-3-dependent and -independent execution. Mice deficient in Atg7 show nearly complete protection from both H/I-induced caspase-3 activation and neuron death, indicating that Atg7 is critically positioned upstream of multiple neuronal death executioner pathways. Adult H/I brain injury also produces a significant increase in autophagy, but, unlike neonatal H/I, neuron death is almost exclusively caspase-3-independent. These data suggest that autophagy plays an essential role in triggering neuronal death execution after H/I injury.

Although it has been considered that autophagy is essential for the maintenance of cellular metabolism, our data suggest that excess autophagy under pathological conditions may lead to cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Uchiyama Y, Shibata M, Koike M et al (2008) Autophagy—physiology and pathophysiology. Histochem Cell Biol 129: 407–420

    Article  CAS  PubMed  Google Scholar 

  2. Blomgren K, Leist M, Groc L (2007) Pathological apoptosis in the developing brain. Apoptosis 12: 993–1010

    Article  PubMed  Google Scholar 

  3. Blomgren K, Hagberg H (2006) Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radic Biol Med 40: 388–397

    Article  CAS  PubMed  Google Scholar 

  4. Blomgren K, Zhu C, Hallin U et al (2003) Mitochondria and ischemic reperfusion damage in the adult and in the developing brain. Biochem Biophys Res Commun 304: 551–559

    Article  CAS  PubMed  Google Scholar 

  5. Koike M, Shibata M, Tadakoshi M et al (2008) Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 172: 454–469

    Article  CAS  PubMed  Google Scholar 

  6. Uchiyama Y, Koike M, Shibata M (2008) Autophagic neuron death in neonatal brain ischemia/hypoxia. Autophagy 4: 404–408

    CAS  PubMed  Google Scholar 

  7. Uchiyama Y, Koike M, Shibata M et al (2009) Autophagic neuron death. Methods Enzymol 453: 33–51

    Article  CAS  PubMed  Google Scholar 

  8. Nitatori T, Sato N, Waguri S et al (1995) Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci 15: 1001–1011

    CAS  PubMed  Google Scholar 

  9. Mizushima N (2007) Autophagy: process and function. Genes Dev 21: 2861–2873

    Article  CAS  PubMed  Google Scholar 

  10. Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306: 990–995

    Article  CAS  PubMed  Google Scholar 

  11. Koike M, Shibata M, Waguri S et al (2005) Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Am J Pathol 167: 1713–1728

    CAS  PubMed  Google Scholar 

  12. Nixon RA (2006) Autophagy in neurodegenerative disease: friend, foe or turncoat? Trends Neurosci 29: 528–535

    Article  CAS  PubMed  Google Scholar 

  13. Zhu C, Wang X, Xu F et al (2005) The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ 12: 162–176

    Article  CAS  PubMed  Google Scholar 

  14. Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19: 5720–5728

    Article  CAS  PubMed  Google Scholar 

  15. Haltia M (2006) The neuronal ceroid-lipofuscinoses: from past to present. Biochim Biophys Acta 1762: 850–856

    CAS  PubMed  Google Scholar 

  16. Ivy GO, Schottler F, Wenzel J et al (1984) Inhibitors of lysosomal enzymes: accumulation of lipofuscin-like dense bodies in the brain. Science 226: 985–987

    Article  CAS  PubMed  Google Scholar 

  17. Sleat DE, Donnelly RJ, Lackland H et al (1997) Association of mutations in a lysosomal protein with classical late-infantile neuronal ceroid lipofuscinosis. Science 277: 1802–1805

    Article  CAS  PubMed  Google Scholar 

  18. Ezaki J, Takeda-Ezaki M, Kominami E (2000) Tripeptidyl peptidase I, the late infantile neuronal ceroid lipofuscinosis gene product, initiates the lysosomal degradation of subunit c of ATP synthase. J Biochem 128: 509–516

    CAS  PubMed  Google Scholar 

  19. Ezaki J, Tanida I, Kanehagi N et al (1999) A lysosomal proteinase, the late infantile neuronal ceroid lipofuscinosis gene (CLN2) product, is essential for degradation of a hydrophobic protein, the subunit c of ATP synthase. J Neurochem 72: 2573–2582

    Article  CAS  PubMed  Google Scholar 

  20. Koike M, Nakanishi H, Saftig P et al (2000) Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J Neurosci 20: 6898–6906

    CAS  PubMed  Google Scholar 

  21. Koike M, Shibata M, Ohsawa Y et al (2003) Involvement of two different cell death pathways in retinal atrophy of cathepsin D-deficient mice. Mol Cell Neurosci 22: 146–161

    Article  CAS  PubMed  Google Scholar 

  22. Nakanishi H, Zhang J, Koike M et al (2001) Involvement of nitric oxide released from microglia-macrophages in pathological changes of cathepsin D-deficient mice. J Neurosci 21: 7526–7533

    CAS  PubMed  Google Scholar 

  23. Siintola E, Partanen S, Stromme P et al (2006) Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain 129: 1438–1445

    Article  PubMed  Google Scholar 

  24. Steinfeld R, Reinhardt K, Schreiber K et al (2006) Cathepsin D deficiency is associated with a human neurodegenerative disorder. Am J Hum Genet 78: 988–998

    Article  CAS  PubMed  Google Scholar 

  25. Dunn WA, Jr. (1994) Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol 4: 139–143

    Article  CAS  PubMed  Google Scholar 

  26. Dunn WA Jr (1990) Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J Cell Biol 110: 1935–1945

    Article  CAS  PubMed  Google Scholar 

  27. Liou W, Geuze HJ, Geelen MJ et al (1997) The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J Cell Biol 136: 61–70

    Article  CAS  PubMed  Google Scholar 

  28. Tanaka Y, Guhde G, Suter A et al (2000) Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406: 902–906

    Article  CAS  PubMed  Google Scholar 

  29. Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441: 885–889

    Article  CAS  PubMed  Google Scholar 

  30. Komatsu M, Waguri S, Chiba T et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441: 880–884

    Article  CAS  PubMed  Google Scholar 

  31. Komatsu M, Waguri S, Ueno T et al (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169: 425–434

    Article  CAS  PubMed  Google Scholar 

  32. Ardley HC, Hung CC, Robinson PA (2005) The aggravating role of the ubiquitin-proteasome system in neurodegeneration. FEBS Lett 579: 571–576

    Article  CAS  PubMed  Google Scholar 

  33. Settembre C, Fraldi A, Jahreiss L et al (2008) A block of autophagy in lysosomal storage disorders. Hum Mol Genet 17: 119–129

    Article  CAS  PubMed  Google Scholar 

  34. Zhan SS, Beyreuther K, Schmitt HP (1992) Neuronal ubiquitin and neurofilament expression in different lysosomal storage disorders. Clin Neuropathol 11: 251–255

    CAS  PubMed  Google Scholar 

  35. Bjørkøy G, Lamark T, Brech A et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171: 603–614

    Article  PubMed  Google Scholar 

  36. Moscat J, Diaz-Meco MT, Albert A et al (2006) Cell signaling and function organized by PB1 domain interactions. Mol Cell 23: 631–640

    Article  CAS  PubMed  Google Scholar 

  37. Wooten MW, Hu X, Babu JR et al (2006) Signaling, polyubiquitination, trafficking, and inclusions: sequestosome 1/p62’s role in neurodegenerative disease. J Biomed Biotechnol 2006: 62–79

    Google Scholar 

  38. Komatsu M, Waguri S, Koike M et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131: 1149–1163

    Article  CAS  PubMed  Google Scholar 

  39. Nakai A, Yamaguchi O, Takeda T et al (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13: 619–624

    Article  CAS  PubMed  Google Scholar 

  40. Wang QJ, Ding Y, Kohtz DS et al (2006) Induction of autophagy in axonal dystrophy and degeneration. J Neurosci 26: 8057–8068

    Article  CAS  PubMed  Google Scholar 

  41. Walker NI, Harmon BV, Gobe GC et al (1988) Patterns of cell death. Methods Achiev Exp Pathol 13: 18–54

    CAS  PubMed  Google Scholar 

  42. Lockshin RA, Williams CM (1964) Programmed cell death. II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol 10: 643–649

    Article  CAS  Google Scholar 

  43. Lockshin RA, Zaleri Z (1991) Programmed cell death and apoptosis. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  44. Kerr JF, Wythe AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257

    CAS  PubMed  Google Scholar 

  45. Salvesen GS, Dixit VM (1999) Caspase activation: the induced-proximity model. Proc Natl Acad Sci U S A 96: 10 964–10 967

    Article  CAS  Google Scholar 

  46. Enari M, Sakahira H, Yokoyama H et al (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391: 43–50

    Article  CAS  PubMed  Google Scholar 

  47. Li P, Nijhawan D, Budihardjo I et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479–489

    Article  CAS  PubMed  Google Scholar 

  48. Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22: 299–306

    Article  CAS  PubMed  Google Scholar 

  49. Sakahira H, Enari M, Nagata S (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391: 96–99

    Article  CAS  PubMed  Google Scholar 

  50. Sakahira H, Enari M, Ohsawa Y et al (1999) Apoptotic nuclear morphological change without DNA fragmentation. Curr Biol 9: 543–546

    Article  CAS  PubMed  Google Scholar 

  51. Raff MC, Barres BA, Burne JF et al (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262: 695–700

    Article  CAS  PubMed  Google Scholar 

  52. Blomgren K, Zhu C, Wang X et al (2001) Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of “pathological apoptosis”? J Biol Chem 276: 10 191–10 198

    Article  CAS  Google Scholar 

  53. Gill R, Soriano M, Blomgren K et al (2002) Role of caspase-3 activation in cerebral ischemia-induced neurodegeneration in adult and neonatal brain. J Cereb Blood Flow Metab 22: 420–430

    Article  CAS  PubMed  Google Scholar 

  54. Hu BR, Liu CL, Ouyang Y et al (2000) Involvement of caspase-3 in cell death after hypoxia-ischemia declines during brain maturation. J Cereb Blood Flow Metab 20: 1294–1300

    Article  CAS  PubMed  Google Scholar 

  55. Liu CL, Siesjo BK, Hu BR (2004) Pathogenesis of hippocampal neuronal death after hypoxia-ischemia changes during brain development. Neuroscience 127: 113–123

    Article  CAS  PubMed  Google Scholar 

  56. Zhu C, Qiu L, Wang X et al (2003) Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain. J Neurochem 86: 306–317

    Article  CAS  PubMed  Google Scholar 

  57. McDonald JW, Silverstein FS, Johnston MV (1988) Neurotoxicity of N-methyl-D-aspartate is markedly enhanced in developing rat central nervous system. Brain Res 459: 200–203

    Article  CAS  PubMed  Google Scholar 

  58. Ikonomidou C, Mosinger JL, Salles KS et al (1989) Sensitivity of the developing rat brain to hypobaric/ischemic damage parallels sensitivity to N-methyl-aspartate neurotoxicity. J Neurosci 9: 2809–2818

    CAS  PubMed  Google Scholar 

  59. West T, Atzeva M, Holtzman DM (2006) Caspase-3 deficiency during development increases vulnerability to hypoxic-ischemic injury through caspase-3-independent pathways. Neurobiol Dis 22: 523–537

    Article  CAS  PubMed  Google Scholar 

  60. Parsadanian AS, Cheng Y, Keller-Peck CR et al (1998) Bcl-xL is an antiapoptotic regulator for postnatal CNS neurons. J Neurosci 18: 1009–1019

    CAS  PubMed  Google Scholar 

  61. Kawane K, Fukuyama H, Yoshida H et al (2003) Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation. Nat Immunol 4: 138–144

    Article  CAS  PubMed  Google Scholar 

  62. Kuida K, Zheng TS, Na S et al (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384: 368–372

    Article  CAS  PubMed  Google Scholar 

  63. Lakhani SA, Masud A, Kuida K et al (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311: 847–851

    Article  CAS  PubMed  Google Scholar 

  64. Leonard JR, Klocke BJ, D’Sa C et al (2002) Strain-dependent neurodevelopmental abnormalities in caspase-3-deficient mice. J Neuropathol Exp Neurol 61: 673–677

    PubMed  Google Scholar 

  65. Reznikov KY (1991) Cell proliferation and cytogenesis in the mouse hippocampus. Adv Anat Embryol Cell Biol 122: 1–74

    CAS  PubMed  Google Scholar 

  66. Houde C, Banks KG, Coulombe N et al (2004) Caspase-7 expanded function and intrinsic expression level underlies strain-specific brain phenotype of caspase-3-null mice. J Neurosci 24: 9977–9984

    Article  CAS  PubMed  Google Scholar 

  67. Clarke PG (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 181: 195–213

    CAS  Google Scholar 

  68. Bursch W (2001) The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 8: 569–581

    Article  CAS  PubMed  Google Scholar 

  69. Canu N, Tufi R, Serafino AL et al (2005) Role of the autophagic-lysosomal system on low potassium-induced apoptosis in cultured cerebellar granule cells. J Neurochem 92: 1228–1242

    Article  CAS  PubMed  Google Scholar 

  70. Isahara K, Ohsawa Y, Kanamori S et al (1999) Regulation of a novel pathway for cell death by lysosomal aspartic and cysteine proteinases. Neuroscience 91: 233–249

    Article  CAS  PubMed  Google Scholar 

  71. Ohsawa Y, Isahara K, Kanamori S et al (1998) An ultrastructural and immunohistochemical study of PC12 cells during apoptosis induced by serum deprivation with special reference to autophagy and lysosomal cathepsins. Arch Histol Cytol 61: 395–403

    Article  CAS  PubMed  Google Scholar 

  72. Shibata M, Kanamori S, Isahara K et al (1998) Participation of cathepsins B and D in apoptosis of PC12 cells following serum deprivation. Biochem Biophys Res Commun 251: 199–203

    Article  CAS  PubMed  Google Scholar 

  73. Telbisz A, Kovacs AL, Somosy Z (2002) Influence of X-ray on the autophagic-lysosomal system in rat pancreatic acini. Micron 33: 143–151

    Article  PubMed  Google Scholar 

  74. Uchiyama Y (2001) Autophagic cell death and its execution by lysosomal cathepsins. Arch Histol Cytol 64: 233–246

    Article  CAS  PubMed  Google Scholar 

  75. Yu L, Alva A, Su H et al (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304: 1500–1502

    Article  CAS  PubMed  Google Scholar 

  76. Bursch W, Ellinger A, Kienzl H et al (1996) Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17: 1595–1607

    Article  CAS  PubMed  Google Scholar 

  77. Ploeg RJ, D’Alessandro AM, Knechtle SJ et al (1993) Risk factors for primary dysfunction after liver transplantation—a multivariate analysis. Transplantation 55: 807–813

    Article  CAS  PubMed  Google Scholar 

  78. Strasberg SM, Howard TK, Molmenti EP et al (1994) Selecting the donor liver: risk factors for poor function after orthotopic liver transplantation. Hepatology 20: 829–838

    Article  CAS  PubMed  Google Scholar 

  79. Calmus Y, Cynober L, Dousset B et al (1995) Evidence for the detrimental role of proteolysis during liver preservation in humans. Gastroenterology 108: 1510–1516

    Article  CAS  PubMed  Google Scholar 

  80. Furukawa H, Todo S, Imventarza O et al (1991) Effect of cold ischemia time on the early outcome of human hepatic allografts preserved with UW solution. Transplantation 51: 1000–1004

    Article  CAS  PubMed  Google Scholar 

  81. Gotoh K, Lu Z, Morita M et al (2009) Participation of autophagy in the initiation of graft dysfunction after rat liver transplantation. Autophagy 5: 351–360

    CAS  PubMed  Google Scholar 

  82. Lu Z, Dono K, Gotoh K et al (2005) Participation of autophagy in the degeneration process of rat hepatocytes after transplantation following prolonged cold preservation. Arch Histol Cytol 68: 71–80

    Article  PubMed  Google Scholar 

  83. Cheng Y, Deshmukh M, D’Costa A et al (1998) Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest 101: 1992–1999

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this paper

Cite this paper

Uchiyama, Y., Koike, M., Shibata, M. (2010). Cell Death and Autophagy. In: Tamaki, N., Kuge, Y. (eds) Molecular Imaging for Integrated Medical Therapy and Drug Development. Springer, Tokyo. https://doi.org/10.1007/978-4-431-98074-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-98074-2_19

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-98073-5

  • Online ISBN: 978-4-431-98074-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics