Skip to main content

Beneficial Effects of Bone Marrow Stromal Cell Transplantation on Axonal Regeneration in Injured Spinal Cord

  • Conference paper
Molecular Imaging for Integrated Medical Therapy and Drug Development

Abstract

Recent studies have indicated that bone marrow stromal cells (BMSCs) have the potential to improve neurological function when transplanted into animal models of spinal cord injury (SCI). However, it is still unclear how the transplanted BMSCs promote functional recovery after SCI. In this study. therefore, we evaluated how transplanted BMSCs restore the function of the dorsal corticospinal tract (dCST) in the injured spinal cord. Rats were subjected to incomplete SCI, using a pneumatic impact device. Then BMSC suspension or vehicle was transplanted into the rostral site of the SCI at 7 days after the injury. Fluoro-ruby (FR; Molecular Probes), a fluorescent axonal tracer, was injected into the dorsal funiculus of the rostral site of the SCI 63 days after the injury. BMSC transplantation significantly enhanced functional recovery of the hind limbs. The number of FR-labeled fibers in the dCST at the caudal site of the SCI was significantly higher in the BMSC-transplanted animals than in the vehicle-transplanted animals. Some of the engrafted BMSCs were positive for FR, neuronal nuclear antigen (NeuN). and microtubule-associated protein 2 (MAP2) in the gray matter. The findings suggest that the transplanted BMSCs acquire neural cell phenotypes around the injury site and contribute to rebuilding neural circuits, including those in the CST. promoting functional recovery of the hind limbs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee JB, Kuroda S, Shichinohe H et al (2003) Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology 23: 169–180

    Article  PubMed  Google Scholar 

  2. Yano S, Kuroda S, Lee JB et al (2005) In vivo fluorescence tracking of bone marrow stromal cells transplanted into a pneumatic injury model of rat spinal cord. J Neurotrauma 22: 907–918

    Article  PubMed  Google Scholar 

  3. Azizi SA, Stokes D, Augelli BJ et al (1998) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. Proc Natl Acad Sci U S A 95: 3908–3913

    Article  CAS  PubMed  Google Scholar 

  4. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 96: 10 711–10 716

    Article  CAS  Google Scholar 

  5. Hokari M, Kuroda S, Shichinohe H et al (2008) Bone marrow stromal cells protect and repair damaged neurons through multiple mechanisms. J Neurosci Res 86: 1024–1035

    Article  CAS  PubMed  Google Scholar 

  6. Yano S, Kuroda S, Shichinohe H et al (2006) Bone marrow stromal cell transplantation preserves gammaaminobutyric acid receptor function in the injured spinal cord. J Neurotrauma 23: 1682–1692

    Article  PubMed  Google Scholar 

  7. Chiba Y, Kuroda S, Maruichi K et al (2009) Transplanted bone marrow stromal cells promote axonal regeneration and improve motor function in a rat spinal cord injury model. Neurosurgery 64: 991–1000

    Article  PubMed  Google Scholar 

  8. Shichinohe H, Kuroda S, Lee JB et al (2004) In vivo tracking of bone marrow stromal cells transplanted into mice cerebral infarct by fluorescence optical imaging. Brain Res Brain Res Protoc 13: 166–175

    Article  PubMed  Google Scholar 

  9. Shichinohe H, Kuroda S, Yano S et al (2006) Improved expression of gamma-aminobutyric acid receptor in mice with cerebral infarct and transplanted bone marrow stromal cells: an autoradiographic and histologic analysis. J Nucl Med 47: 486–491

    CAS  PubMed  Google Scholar 

  10. Yano S, Kuroda S, Shichinohe H et al (2005) Do bone marrow stromal cells proliferate after transplantation into mice cerebral infarct? A double labeling study. Brain Res 1065: 60–67

    Article  CAS  PubMed  Google Scholar 

  11. Shichinohe H, Kuroda S, Yano S et al (2007) Role of SDF-1/CXCR4 system in survival and migration of bone marrow stromal cells after transplantation into mice cerebral infarct. Brain Res 1183:138–147

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this paper

Cite this paper

Chiba, Y. et al. (2010). Beneficial Effects of Bone Marrow Stromal Cell Transplantation on Axonal Regeneration in Injured Spinal Cord. In: Tamaki, N., Kuge, Y. (eds) Molecular Imaging for Integrated Medical Therapy and Drug Development. Springer, Tokyo. https://doi.org/10.1007/978-4-431-98074-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-98074-2_16

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-98073-5

  • Online ISBN: 978-4-431-98074-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics