Skip to main content
Book cover

Medaka pp 111–130Cite as

Kidney Development, Regeneration, and Polycystic Kidney Disease in Medaka

  • Chapter
  • 921 Accesses

Abstract

Medaka has a pronephros at early larval stages, and thereafter the ­mesonephros develops in the tissues around the pronephric tubule and duct. A marked increase in mesonephric nephrons continues until 2 to 3 months after ­hatching, and consequently the mesonephros consists of 200–300 nephrons on each side. The nephrogenic processes can be histologically featured in the ­developing mesonephros as three distinguishable stages: mesenchymal ­condensation, ­formation of a nephrogenic body, and maturation of the nephron. The appearance of mesenchymal condensates and nephrogenic bodies in the ­interstitial tissue indicates that the de novo nephrogenesis takes place actively. As these nephron precursors are positive for wt1 expression, wt1 could be a good marker of de novo nephrogenesis.

The program for nephron development can be reactivated in medaka during adulthood by artificial injury with chemicals. Intraperitoneal administration of gentamicin, damaging tubules, ducts, and the glomeruli, leads to a significant increase of the mesenchymal condensates and nephrogenic bodies in the injured kidney, which can be also recognized as wt1-positive cell masses. Thus, in contrast to mammals, medaka is capable of regenerating the kidney through de novo nephrogenesis, possibly by recruiting stem cells retained in the interstitial tissue of the adult kidney.

The medaka pc mutant shows lesions quite similar to those of the human genetic disease polycystic kidney disease (PKD): it develops numerous fluid-filled renal cysts and suffers from enlargement of the abdomen. Genetic linkage analysis ­identified the causative gene to be the medaka ortholog of glis3. In humans, the mutations in GLIS3 have been reported to be involved in pathogenesis of pleiotropic genetic diseases including PKD and diabetes. Consistent with the medaka mutant phenotype, glis3 mRNA is expressed in the epithelia of the renal tubule and duct. The cilia in the pronephric tubule are significantly shortened in the pc mutant. Glis3 protein is preferentially located in the cilium of renal epithelial cell. Similar to the other PKD genes reported previously, glis3 may also play a crucial role in the ciliary structure or function.

All the findings suggest that medaka serves as a good model for understanding the process of kidney development and regeneration as well as the pathogenesis of human genetic kidney diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bisgrove BW, Yost HJ (2006) The roles of cilia in developmental disorders and disease. Development (Camb) 133:4131–4143

    Article  CAS  Google Scholar 

  • Cantley LG (2005) Adult stem cells in the repair of the injured renal tubule. Nat Clin Pract Nephrol 1:22–32

    Article  PubMed  CAS  Google Scholar 

  • Chauvet V, Tian X, Husson H, Grimm DH, Wang T, Hiesberger T, Igarashi P, Bennett AM, Ibraghimov-Beskrovnaya O, Somlo S, Caplan MJ (2004) Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. J Clin Invest 114:1433–1443

    PubMed  CAS  Google Scholar 

  • Cormier SM, Neiheisel TW, Racine RN, Reimschussel R (1995) New nephron development in fish from polluted waters: a possible biomarker. Ecotoxicology 4:157–168

    Article  Google Scholar 

  • Drummond I (2003) The skate weighs in on kidney regeneration. J Am Soc Nephrol 14:1704–1705

    Article  PubMed  Google Scholar 

  • Drummond IA, Majumdar A, Hentschel H, Elger M, Solnica-Krezel L, Schier AF, Neuhauss SC, Stemple DL, Zwartkruis F, Rangini Z, Driever W, Fishman MC (1998) Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development (Camb) 125:4655–4667

    CAS  Google Scholar 

  • Elger M, Hentschel H, Litteral J, Wellner M, Kirsch T, Luft FC, Haller H (2003) Nephrogenesis is induced by partial nephrectomy in the elasmobranch Leucoraja erinacea. J Am Soc Nephrol 14:1506–1518

    Article  PubMed  Google Scholar 

  • Fedorova S, Miyamoto R, Harada T, Isogai S, Hashimoto H, Ozato K, Wakamatsu Y (2008) Renal glomerulogenesis in medaka fish, Oryzias latipes. Dev Dyn 237:2342–2352

    Article  PubMed  Google Scholar 

  • Gilbert SF (2003) Developmental biology. Sinauer, Sunderland

    Google Scholar 

  • Harder W (1975) Anatomy of fishes. Schweizerbart, Stuttgart

    Google Scholar 

  • Hickman CPJ, Trump BF (1969) The kidney. In: Hoar WS, Randall DJ (eds) Fish physiology. Academic Press, New York, pp 91–239

    Google Scholar 

  • Igarashi P, Somlo S (2002) Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol 13:2384–2398

    Article  PubMed  CAS  Google Scholar 

  • Igarashi P, Somlo S (2007) Polycystic kidney disease. J Am Soc Nephrol 18:1371–1373

    Article  PubMed  CAS  Google Scholar 

  • Kang HS, Beak JY, Kim YS, Herbert R, Jetten AM (2009) Glis3 is associated with primary cilia and Wwtr1/TAZ and implicated in polycystic kidney disease. Mol Cell Biol 29:2556–2569

    Article  PubMed  CAS  Google Scholar 

  • Karp R, Brasel JA, Winick M (1971) Compensatory kidney growth after uninephrectomy in adult and infant rats. Am J Dis Child 121:186–188

    PubMed  CAS  Google Scholar 

  • Kim YS, Lewandoski M, Perantoni AO, Kurebayashi S, Nakanishi G, Jetten AM (2002) Identification of Glis1, a novel Gli-related, Kruppel-like zinc finger protein containing transactivation and repressor functions. J Biol Chem 277:30901–30913

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Nakanishi G, Lewandoski M, Jetten AM (2003) GLIS3, a novel member of the GLIS subfamily of Kruppel-like zinc finger proteins with repressor and activation functions. Nucleic Acids Res 31:5513–5525

    Article  PubMed  CAS  Google Scholar 

  • Kim SC, Kim YS, Jetten AM (2005) Kruppel-like zinc finger protein Gli-similar 2 (Glis2) represses transcription through interaction with C-terminal binding protein 1 (CtBP1). Nucleic Acids Res 33:6805–6815

    Article  PubMed  CAS  Google Scholar 

  • Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA (2005) Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development (Camb) 132:1907–1921

    Article  CAS  Google Scholar 

  • Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691

    Article  PubMed  CAS  Google Scholar 

  • Lagler KF, Bardach JE, Miller RR, May Passino DR (1977) Ichthyology. Wiley, New York

    Google Scholar 

  • Lin F, Moran A, Igarashi P (2005) Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 115:1756–1764

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki E, Fukuta K, Tada T, Harada T, Watanabe N, Matsuo S, Hashimoto H, Ozato K, Wakamatsu Y (2005) Fish mesonephric model of polycystic kidney disease in medaka (Oryzias latipes) pc mutant. Kidney Int 68:23–34

    Google Scholar 

  • Nauli SM, Zhou J (2004) Polycystins and mechanosensation in renal and nodal cilia. BioEssays 26:844–856

    Article  PubMed  CAS  Google Scholar 

  • Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  PubMed  CAS  Google Scholar 

  • Omran H, Kobayashi D, Olbrich H, Tsukahara T, Loges NT, Hagiwara H, Zhang Q, Leblond G, O’Toole E, Hara C, Mizuno H, Kawano H, Fliegauf M, Yagi T, Koshida S, Miyawaki A, Zentgraf H, Seithe H, Reinhardt R, Watanabe Y, Kamiya R, Mitchell DR, Takeda H (2008) Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature (Lond) 456:611–616

    Article  CAS  Google Scholar 

  • Perner B, Englert C, Bollig F (2007) The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. Dev Biol 309:87–96

    Article  PubMed  CAS  Google Scholar 

  • Reimschuessel R (2001) A fish model of renal regeneration and development. ILAR J 42:285–291

    Article  PubMed  CAS  Google Scholar 

  • Reimschuessel R, Biggs K (1996) Zebrafish model for nephron regeneration following injury. Cold Spring Harbor Symposium on Zebrafish Development and Genetics. Cold Spring Harbor, New York

    Google Scholar 

  • Reimschuessel R, Bennett RO, May EB, Lipsky MM (1990) Development of newly formed nephrons in the goldfish kidney following hexachlorobutadiene-induced nephrotoxicity. Toxicol Pathol 18:32–38

    PubMed  CAS  Google Scholar 

  • Reimschuessel R, Bennett RO, May EA, Lipsky MM (1993) Pathological alterations and new nephron development in rainbow trout Oncorhynchus mykiss following tetrachloroethylene contamination. J Zoo Anim Med 24:503–507

    Google Scholar 

  • Ricardo SD, Deane JA (2005) Adult stem cells in renal injury and repair. Nephrology (Carlton) 10:276–282

    Article  Google Scholar 

  • Rookmaaker MB, Smits AM, Tolboom H, Van’t Wout K, Martens AC, Goldschmeding R, Joles JA, Van Zonneveld AJ, Grone HJ, Rabelink TJ, Verhaar MC (2003) Bone-marrow-derived cells contribute to glomerular endothelial repair in experimental glomerulonephritis. Am J Pathol 163:553–562

    Article  PubMed  Google Scholar 

  • Salice CJ, Rokous JS, Kane AS, Reimschuessel R (2001) New nephron development in goldfish (Carassius auratus) kidneys following repeated gentamicin-induced nephrotoxicosis. Comp Med 51:56–59

    PubMed  CAS  Google Scholar 

  • Senee V, Chelala C, Duchatelet S, Feng D, Blanc H, Cossec JC, Charon C, Nicolino M, Boileau P, Cavener DR, Bougneres P, Taha D, Julier C (2006) Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet 38:682–687

    Article  PubMed  CAS  Google Scholar 

  • Serluca FC, Fishman MC (2001) Pre-pattern in the pronephric kidney field of zebrafish. Development (Camb) 128:2233–2241

    CAS  Google Scholar 

  • Taulman PD, Haycraft CJ, Balkovetz DF, Yoder BK (2001) Polaris, a protein involved in left-right axis patterning, localizes to basal bodies and cilia. Mol Biol Cell 12:589–599

    PubMed  CAS  Google Scholar 

  • Tobin JL, Beales PL (2007) Bardet–Biedl syndrome: beyond the cilium. Pediatr Nephrol 22:926–936

    Article  PubMed  Google Scholar 

  • Vainio S, Lin Y (2002) Coordinating early kidney development: lessons from gene targeting. Nat Rev Genet 3:533–543

    Article  PubMed  CAS  Google Scholar 

  • Verghese E, Weidenfeld R, Bertram JF, Ricardo SD, Deane JA (2008) Renal cilia display length alterations following tubular injury and are present early in epithelial repair. Nephrol Dial Transplant 23:834–841

    Article  PubMed  Google Scholar 

  • Wang S, Luo Y, Wilson PD, Witman GB, Zhou J (2004) The autosomal recessive polycystic ­kidney disease protein is localized to primary cilia, with concentration in the basal body area. J Am Soc Nephrol 15:592–602

    Article  PubMed  Google Scholar 

  • Watanabe N, Kato M, Suzuki N, Inoue C, Fedorova S, Hashimoto H, Maruyama S, Matsuo S, Wakamatsu Y (2009) Kidney regeneration through nephron neogenesis in medaka. Dev Growth Differ 51:135–143

    Article  PubMed  Google Scholar 

  • Watnick T, Germino G (2003) From cilia to cyst. Nat Genet 34:355–356

    Article  PubMed  CAS  Google Scholar 

  • Yoder BK (2007) Role of primary cilia in the pathogenesis of polycystic kidney disease. J Am Soc Nephrol 18:1381–1388

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Hashimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Hashimoto, H. (2011). Kidney Development, Regeneration, and Polycystic Kidney Disease in Medaka. In: Naruse, K., Tanaka, M., Takeda, H. (eds) Medaka. Springer, Tokyo. https://doi.org/10.1007/978-4-431-92691-7_8

Download citation

Publish with us

Policies and ethics