Skip to main content
Book cover

Medaka pp 81–93Cite as

Medaka Bone Development

  • Chapter
  • 973 Accesses

Abstract

Recent advances of medaka bone development are described, which include osteoblast- and osteoclast-specific cells and marker genes, by using new techniques: screening of medaka bone and fin ray mutants followed by ­positional cloning, and transgenic lines employing osteoblast and osteoclast specific ­promoters linked with a fluorescent protein, in addition to electron microscopy for histology. Because live imaging becomes the most powerful tool for characterization of cell development and organ formation, studies of bone development in medaka as an animal model bring new molecular and cellular insights of bone by visual data from the medaka line specifically derived from coupling the transgenic line with a mutant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Chatani M, Inohaya K, Kudo A (2008) In-vivo imaging for osteoclasts in medaka, showing the evidence of bone remodeling (2008). In: Abstracts, International Conference on Zebrafish Development and Genetics, p 314

    Google Scholar 

  • Ekanayake S, Hall BK (1988) Ultrastructure of the osteogenesis of acellular vertebral bone in the Japanese medaka, Oryzias latipes (Teleostei, Cyprinidontidae). Am J Anat 182:241–249

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Isogai S, Kudo A (2006) The vascular anatomy of the developing medaka, Oryzias latipes: a complementary fish model for the cardiovascular research of vertebrate. Dev Dyn 235:734–746

    Article  PubMed  Google Scholar 

  • Furutani-Seiki M, Sasado T, Morinaga C et al (2004) A systematic genome-wide screen for ­mutations affecting organogenesis in medaka, Oryzias latipes. Mech Dev 121:647–658

    Article  CAS  PubMed  Google Scholar 

  • Garrity DM, Childs S, Fishman MC (2002) The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome. Development (Camb) 129:4635–4645

    CAS  Google Scholar 

  • Hayashida Y, Kawamura T, Hori-e R, Yamashita I (2004) Retionic acid and its receptors are required for expression of aryl hydrocarbon receptor mRNA and embryonic development of blood vessel and bone in the medaka fish, Oryzias latipes. Zool Sci 21:541–551

    Article  CAS  PubMed  Google Scholar 

  • Hibiya K, Katsumoto T, Kondo T, Kitabayashi I, Kudo A (2009) Brpf1, a subunit of the MOZ histone acetyl transferase complex, maintains expression of anterior and posterior Hox genes for proper patterning of craniofacial and caudal skeletons. Dev Biol 329:176–190

    Article  CAS  PubMed  Google Scholar 

  • Inohaya K, Kudo A (2000) Temporal and spatial patterns of cbfal expression during embryonic development in the teleost, Oryzias latipes. Dev Genes Evol 210:570–574

    Article  CAS  PubMed  Google Scholar 

  • Inohaya K, Takano Y, Kudo A (2007) The teleost intervertebral region acts as a growth center of the centrum: in vivo visualization of osteoblasts and their progenitors in transgenic fish. Dev Dyn 236:3031–3046

    Article  CAS  PubMed  Google Scholar 

  • Inohaya K, Takano Y, Kudo A (2010) Production of Wnt4b by floor plate cells is essential for the segmental patterning of the vertebral column in medaka. Development 137:1807–1813

    Google Scholar 

  • Ishikawa Y (2000) Medakafish as a model system for vertebrate developmental genetics. BioEssays 22:487–495

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa Y, Hyodo-Taguchi Y, Aoki K, Yasuda T, Matsumoto A, Sasanuma M (1999) Induction of mutations by ENU in the medaka germline. Fish Biol J Medaka 10:27–29

    Google Scholar 

  • Katogi R, Nakatani Y, Shin-I T, Kohara Y, Inohaya K, Kudo A (2004) Large-scale analysis of the genes involved in fin regeneration and blastema formation in the medaka, Oryzias latipes. Mech Dev 121:861–872

    Article  CAS  PubMed  Google Scholar 

  • Lakkakorpi PT, Vaananen HK (1996) Cytoskeletal changes in osteoclasts during the resorption cycle. Microsc Res Tech 33:171–181

    Article  CAS  PubMed  Google Scholar 

  • Laue K, Janicke M, Plaster N, Sonntag C, Hammerschmidt M (2008) Restriction of retinoic acid activity by Cyp26b1 is required for proper timing and patterning of osteogenesis during zebrafish development. Development (Camb) 135:3775–3787

    Article  CAS  Google Scholar 

  • Lerner UH (2000) Osteoclast formation and resorption. Matrix Biol 19:107–120

    Article  CAS  PubMed  Google Scholar 

  • Marks SC, Hermey DC (1996) The structure and development of bone. In: Bilezikian JP et al (eds) Principles of bone biology. Academic Press, London

    Google Scholar 

  • Mise T, Iijima M, Inohaya K, Kudo A, Wada H (2008) Function of Pax1 and Pax9 in the sclerotome of medaka fish. Genesis 46:185–192

    Article  CAS  PubMed  Google Scholar 

  • Moriyama A, Inohaya K, Maruyama K, Kudo A (2010) Bef medaka mutant reveals the essential role of c-myb in both primitive and definitive hematopoiesis. Dev Biol 345:133–143

    Google Scholar 

  • Mullins MC, Hammerschmidt M, Haffter P, Nusslein-Volhard C (1994) Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol 4:189–202

    Article  CAS  PubMed  Google Scholar 

  • Nakatani Y, Kawakami A, Kudo A (2007) Cellular and molecular processes of regeneration, with special emphasis on fish fins. Dev Growth Differ 49:145–154

    Article  PubMed  Google Scholar 

  • Nakatani Y, Nishidate M, Fujita M, Kawakami A, Kudo A (2008) Migration of mesenchymal cell fated to blastema is necessary for fish fin regeneration. Dev Growth Differ 50:71–83

    Article  CAS  PubMed  Google Scholar 

  • Nemoto Y, Higuchi K, Baba O, Kudo A, Takano Y (2007) Multinucleate osteoclasts in medaka as evidence of active bone remodeling. Bone (NY) 40:399–408

    Article  CAS  Google Scholar 

  • Nemoto Y, Chatani M, Inohaya K, Hiraki Y, Kudo A (2008) Expression of marker genes during otolith development in medaka. Gene Expr Patterns 8:92–95

    Article  CAS  PubMed  Google Scholar 

  • Nishidate M, Nakatani Y, Kudo A, Kawakami A (2007) Identification of novel markers expressed during fin regeneration by microarray analysis in medaka fin. Dev Dyn 236:2685–2693

    Article  CAS  PubMed  Google Scholar 

  • North TE, Zon LI (2003) Modeling human hematopoietic and cardiovascular diseases in zebrafish. Dev Dyn 228:568–583

    Article  CAS  PubMed  Google Scholar 

  • Ohisa S, Inohaya K, Takano Y, Kudo A (2010) sec24d encoding a component of COPII is essential for vertebra formation, revealed by the analysis of the medaka mutant, vbi. Dev Biol 342:85–95

    Google Scholar 

  • Renn J, Winkler C (2009) Osterix-mChery transgenic medaka for in vivo imaging of bone formation. Dev Dyn 238:241–248

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi S, Nakatani Y, Takamatsu N, Hori H, Kawakami A, Inohaya K, Kudo A (2006) Medaka unextended-fin mutants suggest a role for Hoxb8a in cell migration and osteoblast differentiation during appendage formation. Dev Biol 293:426–438

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto D, Kudo H, Inohaya K, Yokoi H, Narita T, Naruse K, Mitani H, Shima A, Ishikawa Y, Imai Y, Kudo A (2004) A mutation in the gene for δ-aminolevulinic acid dehydratase (ALAD) causes hypochromic anemia in the medaka Oryzias latipes. Mech Dev 121:747–752

    Article  CAS  PubMed  Google Scholar 

  • Sehnert AJ, Stainier DY (2002) A window to the heart: can zebrafish mutants help us understand heart disease in humans? Trends Genet 18:491–494

    Article  CAS  PubMed  Google Scholar 

  • Takeshita S, Kaji K, Kudo A (2000) Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J Bone Miner Res 15:1477–1488

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Ohisa S, Orihara N, Sakaguchi S, Horie K, Hibiya K, Konno S, Miyake A, Setiamarga D, Takeda H, Imai Y, Kudo A (2004) Characterization of mutations affecting embryonic hematopoiesis in the medaka, Oryzias latipes. Mech Dev 121:739–746

    Article  CAS  PubMed  Google Scholar 

  • Taneda Y, Konno S, Makino S, Morioka M, Fukuda K, Imai Y, Kudo A, Kawakami A (2010) Epigenetic control of cardiomyocyte production in response to a stress during the medaka heart development. Dev Biol 340:30–40

    Google Scholar 

  • Wagner TU, Renn J, Riemensperger T et al (2003) The teleost fish medaka (Oryzias latipes) as genetic model to study gravity dependent bone homeostasis in vivo. Adv Space Res 32:1459–1465

    Article  CAS  PubMed  Google Scholar 

  • Witten PE, Bendahmane M, Abou-Haila A (1997) Enzyme histochemical characteristics of osteoblasts and mononucleated osteoclasts in a teleost fish with acellular bone (Oreochromis niloticus, Cichlidae). Cell Tissue Res 287:591–599

    Article  PubMed  Google Scholar 

  • Witten PE, Hansen A, Hall BK (2001) Features of mono- and multinucleated bone resorbing cells of the zebrafish Danio rerio and their contribution to skeletal development, remodeling, and growth. J Morphol 250:197–207

    Article  CAS  PubMed  Google Scholar 

  • Yang Y (2009) Skeletal morphogenesis and embryonic development. In: Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. American Society for Bone and Mineral Research (ASBMR), Washington, DC

    Google Scholar 

  • Yasutake J, Inohaya K, Kudo A (2004) Twist functions in vertebral column formation in the medaka, Oryzias latipes. Mech Dev 121:883–894

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank my collaborators in Tokyo Institute of Technology, including K. Inohaya, K. Hibiya, M. Chatani, Y. Nemoto, J. Yasutake, M. Fujita, M. Nishidate, R. Katogi, A. Moriyama, D. Sakamoto, K. Tanaka, S. Ohisa, N. Orihara, S. Sakaguchi, K. Horie, S. Konno, Y. Imai, Y. Nakatani, and A. Kawakami. I specifically thank Dr. K. Inohaya for critical reading of the manuscript. This work was supported in part by grants-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and by ground-based research program for Space Utilization promoted by Japan Space Forum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kudo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Kudo, A. (2011). Medaka Bone Development. In: Naruse, K., Tanaka, M., Takeda, H. (eds) Medaka. Springer, Tokyo. https://doi.org/10.1007/978-4-431-92691-7_6

Download citation

Publish with us

Policies and ethics