Medaka pp 49-58 | Cite as

Transposable Elements Tol1 and Tol2

  • Akihiko Koga


Medaka harbors active DNA-based transposable elements in its genome. This feature is unique among vertebrates and has enabled a wide range of studies on DNA-based elements, specifically on such topics as their transposition mechanisms, their population dynamics, and their contribution to genome evolution as natural mutagens. Findings of particular significance include the rapid expansion of an element in the medaka genome, the elevation of the mutation rate of host genes, and the disappearance of elements after they have functioned as mutagens. In addition to these contributions to basic biology, active DNA-based elements from medaka have also contributed to the development of tools for genetic manipulations, such as gene transfer, mutagenesis, gene tagging, and promoter/enhancer trapping. These tools are now used in a wide range of vertebrates, including humans, mice, and zebrafish.


Transposable Element Target Site Duplication Transposase Gene Tyrosinase Gene Albino Mutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Asakawa K, Suster ML, Mizusawa K, Nagayoshi S, Kotani T, Urasaki A, Kishimoto Y, Hibi M, Kawakami K (2008) Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci USA 105:1255–1260PubMedCrossRefGoogle Scholar
  2. Bingham PM, Kidwell MG, Rubin GM (1982) The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P-strain-specific transposon family. Cell 29:995–1004PubMedCrossRefGoogle Scholar
  3. Calvi BR, Hong TJ, Findley SD, Gelbart WM (1991) Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, activator, and Tam3. Cell 66:465–471PubMedCrossRefGoogle Scholar
  4. Fedoroff N, Wessler S, Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35:235–242PubMedCrossRefGoogle Scholar
  5. Fraser MJ, Ciszczon T, Elick T, Bauser C (1996) Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol Biol 5:141–151PubMedCrossRefGoogle Scholar
  6. Iida A, Inagaki H, Suzuki M, Wakamatsu Y, Hori H, Koga A (2004) The tyrosinase gene of the i b albino mutant of the medaka fish carries a transposable element insertion in the promoter region. Pigment Cell Res 17:158–164PubMedCrossRefGoogle Scholar
  7. Iida A, Takamatsu N, Hori H, Wakamatsu Y, Shimada A, Shima A, Koga A (2005) Reversion mutation of i b oculocutaneous albinism to wild-type pigmentation in medaka fish. Pigment Cell Res 18:382–384PubMedCrossRefGoogle Scholar
  8. Inagaki H, Bessho Y, Koga A, Hori H (1994) Expression of the tyrosinase-encoding gene in a colorless melanophore mutant of the medaka fish, Oryzias latipes. Gene (Amst) 150:319–324CrossRefGoogle Scholar
  9. Ivics Z, Hackett PB, Plasterk RH, Izsvak Z (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510PubMedCrossRefGoogle Scholar
  10. Kasahara M, Naruse K, Sasaki S et al (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature (Lond) 447:714–719CrossRefGoogle Scholar
  11. Kawakami K (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8 suppl 1:S7PubMedCrossRefGoogle Scholar
  12. Koga A, Hori H (1997) Albinism due to transposable element insertion in fish. Pigment Cell Res 10:377–381PubMedCrossRefGoogle Scholar
  13. Koga A, Hori H (1999) Homogeneity in the structure of the medaka fish transposable element Tol2. Genet Res 73:7–14PubMedCrossRefGoogle Scholar
  14. Koga A, Hori H (2000) Detection of de novo insertion of the medaka fish transposable element Tol2. Genetics 156:1243–1247PubMedGoogle Scholar
  15. Koga A, Hori H (2001) The Tol2 transposable element of the medaka fish: an active DNA-based element naturally occurring in a vertebrate genome. Genes Genet Syst 76:1–8PubMedCrossRefGoogle Scholar
  16. Koga A, Inagaki H, Bessho Y, Hori H (1995) Insertion of a novel transposable element in the tyrosinase gene is responsible for an albino mutation in the medaka fish, Oryzias latipes. Mol Gen Genet 249:400–405PubMedCrossRefGoogle Scholar
  17. Koga A, Suzuki M, Inagaki H, Bessho Y, Hori H (1996) Transposable element in fish. Nature (Lond) 383:30CrossRefGoogle Scholar
  18. Koga A, Suzuki M, Maruyama Y, Tsutsumi M, Hori H (1999) Amino acid sequence of a putative transposase protein of the medaka fish transposable element Tol2 deduced from mRNA nucleotide sequences. FEBS Lett 461:295–298PubMedCrossRefGoogle Scholar
  19. Koga A, Shimada A, Shima A, Sakaizumi M, Tachida H, Hori H (2000) Evidence for recent invasion of the medaka fish genome by the Tol2 transposable element. Genetics 155:273–281PubMedGoogle Scholar
  20. Koga A, Hori H, Sakaizumi M (2002a) Gene transfer and cloning of flanking chromosomal regions using the medaka fish Tol2 transposable element. Mar Biotechnol 4:6–11PubMedCrossRefGoogle Scholar
  21. Koga A, Sakaizumi M, Hori H (2002b) Transposable elements in medaka fish. Zool Sci 19:1–6PubMedCrossRefGoogle Scholar
  22. Koga A, Iida A, Hori H, Shimada A, Shima A (2006) Vertebrate DNA transposon as a natural mutator: the medaka fish Tol2 element contributes to genetic variation without recognizable traces. Mol Biol Evol 23:1414–1419PubMedCrossRefGoogle Scholar
  23. Koga A, Shimada A, Kuroki T, Hori H, Kusumi J, Kyono-Hamaguchi Y, Hamaguchi S (2007a) The Tol1 transposable element of the medaka fish moves in human and mouse cells. J Hum Genet 52:628–635PubMedCrossRefGoogle Scholar
  24. Koga A, Higashide I, Hori H, Wakamatsu Y, Kyono-Hamaguchi Y, Hamaguchi S (2007b) The Tol1 element of medaka fish is transposed with only terminal regions and can deliver large DNA fragments into the chromosomes. J Hum Genet 52:1026–1030PubMedCrossRefGoogle Scholar
  25. Koga A, Cheah FS, Hamaguchi S, Yeo GH, Chong SS (2008) Germline transgenesis of zebrafish using the medaka Tol1 transposon system. Dev Dyn 237:2466–2474PubMedCrossRefGoogle Scholar
  26. Korzh V (2007) Transposons as tools for enhancer trap screens in vertebrates. Genome Biol 8 suppl 1:S8PubMedCrossRefGoogle Scholar
  27. Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, Parant JM, Yost HJ, Kanki JP, Chien CB (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236:3088–3099PubMedCrossRefGoogle Scholar
  28. Naruse K (1996) Classification and phylogeny of fishes of the genus Oryzias. Fish Biol J Medaka 8:1–10Google Scholar
  29. Nitasaka E, Yamazaki T (1994) The relationship between DNA structural variation and activities of P elements in P and Q strains of Drosophila melanogaster. Heredity 73:608–615PubMedCrossRefGoogle Scholar
  30. Pace JK 2nd, Gilbert C, Clark MS (2008) Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods. Proc Natl Acad Sci USA 105:17023–17028PubMedCrossRefGoogle Scholar
  31. Rubin GM, Kidwell MG, Bingham PM (1982) The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations. Cell 29:987–994PubMedCrossRefGoogle Scholar
  32. Sakaizumi M, Uwa H, Jeon S-R (1987) Genetic diversity of the East Asian populations of the freshwater fish, Oryzias. Zool Sci 4:1003Google Scholar
  33. Takehana Y, Naruse K, Sakaizumi M (2005) Molecular phylogeny of the medaka fishes genus Oryzias (Beloniformes: Adrianichthyidae) based on nuclear and mitochondrial DNA sequences. Mol Phylogenet Evol 36:417–428PubMedCrossRefGoogle Scholar
  34. Tomita H (1975) Mutant genes in the medaka. In: Yamamoto T (ed) Medaka (killifish): biology and strains. Yugakusha, Tokyo, pp 251–272Google Scholar
  35. Urasaki A, Asakawa K, Kawakami K (2008) Efficient transposition of the Tol2 transposable element from a single-copy donor in zebrafish. Proc Natl Acad Sci USA 105:19827–19832PubMedCrossRefGoogle Scholar
  36. Villefranc JA, Amigo J, Lawson ND (2007) Gateway compatible vectors for analysis of gene function in the zebrafish. Dev Dyn 236:3077–3087PubMedCrossRefGoogle Scholar
  37. Yokoyama T, Silversides DW, Waymire KG, Kwon BS, Takeuchi T, Overbeek PA (1990) Conserved cysteine to serine mutation in tyrosinase is responsible for the classical albino mutation in laboratory mice. Nucleic Acids Res 18:7293–7298PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Primate Research InstituteKyoto UniversityInuyamaJapan

Personalised recommendations