Medaka pp 307-322 | Cite as

Reconstruction of the Vertebrate Ancestral Genome Reveals Dynamic Genome Reorganization in Early Vertebrates

  • Yoichiro Nakatani
  • Hiroyuki Takeda
  • Yuji Kohara
  • Shinichi Morishita


Although several vertebrate genomes have been sequenced, little is known about the genome evolution of early vertebrates and how large-scale genomic changes such as the two rounds of whole genome duplications (2R WGD) affected evolutionary complexity and novelty in vertebrates. Reconstructing the ancestral vertebrate genome is highly nontrivial because of the difficulty in identifying traces originating from the 2R WGD. To resolve this problem, we developed a novel method capable of pinning down remains of the 2R WGD in human and medaka fish genomes using invertebrate tunicate and sea urchin genes to define ohnologs, that is, paralogs produced by the 2R WGD. We validated the reconstruction using the chicken genome, which was not considered in the reconstruction step, and observed that many ancestral proto-chromosomes were retained in the chicken genome and had one-to-one correspondence to chicken microchromosomes, thereby confirming the reconstructed ancestral genomes. Our reconstruction revealed a contrast between the slow karyotype evolution after the second WGD and the rapid, lineage-specific genome reorganizations that occurred in the ancestral lineages of major taxonomic groups such as teleost fishes, amphibians, reptiles, and marsupials.


Chicken Genome Vertebrate Genome Chromosome Fusion Ancestral Karyotype Avian Lineage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abi-Rached L, Gilles A et al (2002) Evidence of en bloc duplication in vertebrate genomes. Nat Genet 31(1):100–105PubMedCrossRefGoogle Scholar
  2. Burt DW (2002) Origin and evolution of avian microchromosomes. Cytogenet Genome Res 96(1–4):97–112PubMedCrossRefGoogle Scholar
  3. Burt DW, Bruley C et al (1999) The dynamics of chromosome evolution in birds and mammals. Nature (Lond) 402(6760):411–413CrossRefGoogle Scholar
  4. Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3(10):e314PubMedCrossRefGoogle Scholar
  5. Dehal P, Satou Y et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298(5601):2157–2167PubMedCrossRefGoogle Scholar
  6. Durand D (2003) Vertebrate evolution: doubling and shuffling with a full deck. Trends Genet 19(1):2–5PubMedCrossRefGoogle Scholar
  7. Friedman R, Hughes AL (2001) Pattern and timing of gene duplication in animal genomes. Genome Res 11(11):1842–1847PubMedGoogle Scholar
  8. Furlong RF, Holland PW (2002) Were vertebrates octoploid? Philos Trans R Soc Lond B Biol Sci 357(1420):531–544PubMedCrossRefGoogle Scholar
  9. Gibson TJ, Spring J (2000) Evidence in favour of ancient octaploidy in the vertebrate genome. Biochem Soc Trans 28(2):259–264PubMedGoogle Scholar
  10. Green DM, Sessions SK (1991) Amphibian cytogenetics and evolution. Academic, San DiegoGoogle Scholar
  11. Gu X, Wang YF et al (2002) Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution. Nat Genet 31(2):205–209PubMedCrossRefGoogle Scholar
  12. Holland PW, Garcia-Fernandez J et al (1994) Gene duplications and the origins of vertebrate development. Development (Suppl) (Camb):125–133Google Scholar
  13. Ikuta T, Yoshida N et al (2004) Ciona intestinalis Hox gene cluster: its dispersed structure and residual colinear expression in development. Proc Natl Acad Sci USA 101(42):15118–15123PubMedCrossRefGoogle Scholar
  14. Jaillon O, Aury JM et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature (Lond) 431(7011):946–957CrossRefGoogle Scholar
  15. Kasahara M, Naruse K et al (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature (Lond) 447(7145):714–719CrossRefGoogle Scholar
  16. Kellis M, Birren BW et al (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature (Lond) 428(6983):617–624CrossRefGoogle Scholar
  17. Kohn M, Hogel J et al (2006) Reconstruction of a 450-My-old ancestral vertebrate protokaryotype. Trends Genet 22(4):203–210PubMedCrossRefGoogle Scholar
  18. McLysaght A, Hokamp K et al (2002) Extensive genomic duplication during early chordate evolution. Nat Genet 31(2):200–204PubMedCrossRefGoogle Scholar
  19. Nakatani Y, Takeda H et al (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17(9):1254–1265PubMedCrossRefGoogle Scholar
  20. Naruse K, Tanaka M et al (2004) A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14(5):820–828PubMedCrossRefGoogle Scholar
  21. Ohno S (1970) Evolution by gene duplication. Springer, New YorkGoogle Scholar
  22. Olmo E (2005) Rate of chromosome changes and speciation in reptiles. Genetica 125(2–3):185–203PubMedCrossRefGoogle Scholar
  23. Panopoulou G, Poustka AJ (2005) Timing and mechanism of ancient vertebrate genome duplications – the adventure of a hypothesis. Trends Genet 21(10):559–567PubMedCrossRefGoogle Scholar
  24. Panopoulou G, Hennig S et al (2003) New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes. Genome Res 13(6):1056–1066PubMedCrossRefGoogle Scholar
  25. Postlethwait JH, Woods IG et al (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10(12):1890–1902PubMedCrossRefGoogle Scholar
  26. Sea Urchin Genome Sequencing Consortium (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314(5801):941–952CrossRefGoogle Scholar
  27. Seoighe C (2003) Turning the clock back on ancient genome duplication. Curr Opin Genet Dev 13(6):636–643PubMedCrossRefGoogle Scholar
  28. Shoguchi E, Kawashima T et al (2006) Chromosomal mapping of 170 BAC clones in the ascidian Ciona intestinalis. Genome Res 16(2):297–303PubMedCrossRefGoogle Scholar
  29. Skrabanek L, Wolfe KH (1998) Eukaryote genome duplication – where’s the evidence? Curr Opin Genet Dev 8(6):694–700PubMedCrossRefGoogle Scholar
  30. Vandepoele K, De Vos W et al (2004) Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci USA 101(6):1638–1643PubMedCrossRefGoogle Scholar
  31. Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2(5):333–341PubMedCrossRefGoogle Scholar
  32. Woods IG, Wilson C et al (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res 15(9):1307–1314PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Yoichiro Nakatani
    • 1
  • Hiroyuki Takeda
    • 2
  • Yuji Kohara
    • 3
  • Shinichi Morishita
    • 4
  1. 1.Department of Computational Biology, Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
  2. 2.Bioinformatics Research and Development (BIRD)Japan Science and Technology Agency (JST)Chiyoda-kuJapan
  3. 3.Department of Biological Sciences, Graduate School of ScienceThe University of TokyoBunkyo-kuJapan
  4. 4.Center for Genetic Resource InformationNational Institute of GeneticsMishimaJapan

Personalised recommendations