Skip to main content

Reconstruction of the Vertebrate Ancestral Genome Reveals Dynamic Genome Reorganization in Early Vertebrates

  • Chapter
Medaka

Abstract

Although several vertebrate genomes have been sequenced, little is known about the genome evolution of early vertebrates and how large-scale genomic changes such as the two rounds of whole genome duplications (2R WGD) affected evolutionary complexity and novelty in vertebrates. Reconstructing the ancestral vertebrate genome is highly nontrivial because of the difficulty in identifying traces originating from the 2R WGD. To resolve this problem, we developed a novel method capable of pinning down remains of the 2R WGD in human and medaka fish genomes using invertebrate tunicate and sea urchin genes to define ohnologs, that is, paralogs produced by the 2R WGD. We validated the reconstruction using the chicken genome, which was not considered in the reconstruction step, and observed that many ancestral proto-chromosomes were retained in the chicken genome and had one-to-one correspondence to chicken microchromosomes, thereby confirming the reconstructed ancestral genomes. Our reconstruction revealed a contrast between the slow karyotype evolution after the second WGD and the rapid, lineage-specific genome reorganizations that occurred in the ancestral lineages of major taxonomic groups such as teleost fishes, amphibians, reptiles, and marsupials.

 This chapter was originally published as “Yoichiro Nakatani, Hiroyuki Takeda, Yuji Kohara, and Shinichi Morishita (2007) Reconstruction of the Vertebrate Ancestral Genome Reveals Dynamic Genome Reorganization in Early Vertebrates. Genome Research 17(9): 1254–1265.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abi-Rached L, Gilles A et al (2002) Evidence of en bloc duplication in vertebrate genomes. Nat Genet 31(1):100–105

    Article  PubMed  CAS  Google Scholar 

  • Burt DW (2002) Origin and evolution of avian microchromosomes. Cytogenet Genome Res 96(1–4):97–112

    Article  PubMed  CAS  Google Scholar 

  • Burt DW, Bruley C et al (1999) The dynamics of chromosome evolution in birds and mammals. Nature (Lond) 402(6760):411–413

    Article  CAS  Google Scholar 

  • Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3(10):e314

    Article  PubMed  Google Scholar 

  • Dehal P, Satou Y et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298(5601):2157–2167

    Article  PubMed  CAS  Google Scholar 

  • Durand D (2003) Vertebrate evolution: doubling and shuffling with a full deck. Trends Genet 19(1):2–5

    Article  PubMed  CAS  Google Scholar 

  • Friedman R, Hughes AL (2001) Pattern and timing of gene duplication in animal genomes. Genome Res 11(11):1842–1847

    PubMed  CAS  Google Scholar 

  • Furlong RF, Holland PW (2002) Were vertebrates octoploid? Philos Trans R Soc Lond B Biol Sci 357(1420):531–544

    Article  PubMed  CAS  Google Scholar 

  • Gibson TJ, Spring J (2000) Evidence in favour of ancient octaploidy in the vertebrate genome. Biochem Soc Trans 28(2):259–264

    PubMed  CAS  Google Scholar 

  • Green DM, Sessions SK (1991) Amphibian cytogenetics and evolution. Academic, San Diego

    Google Scholar 

  • Gu X, Wang YF et al (2002) Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution. Nat Genet 31(2):205–209

    Article  PubMed  CAS  Google Scholar 

  • Holland PW, Garcia-Fernandez J et al (1994) Gene duplications and the origins of vertebrate development. Development (Suppl) (Camb):125–133

    Google Scholar 

  • Ikuta T, Yoshida N et al (2004) Ciona intestinalis Hox gene cluster: its dispersed structure and residual colinear expression in development. Proc Natl Acad Sci USA 101(42):15118–15123

    Article  PubMed  CAS  Google Scholar 

  • Jaillon O, Aury JM et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature (Lond) 431(7011):946–957

    Article  Google Scholar 

  • Kasahara M, Naruse K et al (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature (Lond) 447(7145):714–719

    Article  CAS  Google Scholar 

  • Kellis M, Birren BW et al (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature (Lond) 428(6983):617–624

    Article  CAS  Google Scholar 

  • Kohn M, Hogel J et al (2006) Reconstruction of a 450-My-old ancestral vertebrate protokaryotype. Trends Genet 22(4):203–210

    Article  PubMed  CAS  Google Scholar 

  • McLysaght A, Hokamp K et al (2002) Extensive genomic duplication during early chordate evolution. Nat Genet 31(2):200–204

    Article  PubMed  CAS  Google Scholar 

  • Nakatani Y, Takeda H et al (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17(9):1254–1265

    Article  PubMed  CAS  Google Scholar 

  • Naruse K, Tanaka M et al (2004) A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14(5):820–828

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, New York

    Google Scholar 

  • Olmo E (2005) Rate of chromosome changes and speciation in reptiles. Genetica 125(2–3):185–203

    Article  PubMed  Google Scholar 

  • Panopoulou G, Poustka AJ (2005) Timing and mechanism of ancient vertebrate genome duplications – the adventure of a hypothesis. Trends Genet 21(10):559–567

    Article  PubMed  CAS  Google Scholar 

  • Panopoulou G, Hennig S et al (2003) New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes. Genome Res 13(6):1056–1066

    Article  PubMed  Google Scholar 

  • Postlethwait JH, Woods IG et al (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10(12):1890–1902

    Article  PubMed  CAS  Google Scholar 

  • Sea Urchin Genome Sequencing Consortium (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314(5801):941–952

    Article  Google Scholar 

  • Seoighe C (2003) Turning the clock back on ancient genome duplication. Curr Opin Genet Dev 13(6):636–643

    Article  PubMed  CAS  Google Scholar 

  • Shoguchi E, Kawashima T et al (2006) Chromosomal mapping of 170 BAC clones in the ascidian Ciona intestinalis. Genome Res 16(2):297–303

    Article  PubMed  CAS  Google Scholar 

  • Skrabanek L, Wolfe KH (1998) Eukaryote genome duplication – where’s the evidence? Curr Opin Genet Dev 8(6):694–700

    Article  PubMed  CAS  Google Scholar 

  • Vandepoele K, De Vos W et al (2004) Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci USA 101(6):1638–1643

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2(5):333–341

    Article  PubMed  CAS  Google Scholar 

  • Woods IG, Wilson C et al (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res 15(9):1307–1314

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Morishita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Nakatani, Y., Takeda, H., Kohara, Y., Morishita, S. (2011). Reconstruction of the Vertebrate Ancestral Genome Reveals Dynamic Genome Reorganization in Early Vertebrates. In: Naruse, K., Tanaka, M., Takeda, H. (eds) Medaka. Springer, Tokyo. https://doi.org/10.1007/978-4-431-92691-7_20

Download citation

Publish with us

Policies and ethics