Medaka pp 241-253 | Cite as

Function of the Medaka Male Sex-Determining Gene

  • Manfred Schartl


Substantial genetic and experimental evidence has accumulated that the medaka male sex-determining gene on the Y chromosome is dmrt1bY/dmY. The gene emerged approximately 5–10 million years ago from a duplication of the autosomal dmrt1a gene. The dmrt1bY gene encodes a nuclear protein of 36 kDa that binds to specific DNA sequences via the conserved DM domain containing two so-called intertwined zinc fingers. Transcriptional regulation by a Dmrt1a and Dmrt1bY binding site in the dmrt1bY promoter and posttranscriptional regulation through a highly conserved element in the 3′-UTR contribute to a specific expression in the somatic cells of the developing male gonad anlage during the sex determination stage and a massive downregulation in the Sertoli cells of the adult testes. The initiating process of sexual development of the undifferentiated gonad toward either ovary or testes, namely the inhibition of proliferation of the primordial germ cells in males, is mediated by Dmrt1bY. The molecular mechanisms by which Dmrt1bY brings about this effect are unknown so far.


Sertoli Cell Adult Testis Dmrt1 Gene Embryonic Gonad Undifferentiated Gonad 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I gratefully acknowledge the contribution of present and former members of my laboratory and many colleagues worldwide. Their research is the basis of this manuscript. I also apologize to those whose work unintentionally might not have been mentioned adequately. I thank Amaury Herpin for critical discussions and comments and Monika Niklaus Ruiz for help in preparing the manuscript. I also thank Susanne Schories and Ingo Braasch for help with Fig. 16.2.


  1. Aida T (1936) Sex reversal in Aplocheilus latipes and a new explanation of sex differentiation. Genetics 21:136–153PubMedGoogle Scholar
  2. An W, Cho S, Ishii H, Wensink PC (1996) Sex-specific and non-sex-specific oligomerization domains in both of the doublesex transcription factors from Drosophila melanogaster. Mol Cell Biol 16:3106–3111PubMedGoogle Scholar
  3. Aoyama S, Shibata K, Tokunaga S, Takase M, Matsui K, Nakamura M (2003) Expression of Dmrt1 protein in developing and in sex-reversed gonads of amphibians. Cytogenet Genome Res 101:295–301PubMedCrossRefGoogle Scholar
  4. Bubenshchikova E, Kaftanovskaya E, Motosugi N, Fujimoto T, Arai K, Kinoshita M, Hashimoto H, Ozato K, Wakamatsu Y (2007) Diploidized eggs reprogram adult somatic cell nuclei to pluripotency in nuclear transfer in medaka fish (Oryzias latipes). Dev Growth Differ 49:699–709PubMedCrossRefGoogle Scholar
  5. Fahrioglu U, Murphy MW, Zarkower D, Bardwell VJ (2007) mRNA expression analysis and the molecular basis of neonatal testis defects in Dmrt1 mutant mice. Sex Dev 1:42–58PubMedCrossRefGoogle Scholar
  6. Guo Y, Cheng H, Huang X, Gao S, Yu H, Zhou R (2005) Gene structure, multiple alternative splicing, and expression in gonads of zebrafish Dmrt1. Biochem Biophys Res Commun 330:950–957PubMedCrossRefGoogle Scholar
  7. Hattori RS, Gould RJ, Fujioka T, Saito T, Kurita J, Strussmann CA, Yokota M, Watanabe S (2007) Temperature-dependent sex determination in Hd-rR medaka Oryzias latipes: gender sensitivity, thermal threshold, critical period, and DMRT1 expression profile. Sex Dev 1:138–146PubMedCrossRefGoogle Scholar
  8. Herpin A, Schindler D, Kraiss A, Hornung U, Winkler C, Schartl M (2007) Inhibition of primordial germ cell proliferation by the medaka male determining gene Dmrt I bY. BMC Dev Biol 7:99PubMedCrossRefGoogle Scholar
  9. Herpin A, Nakamura S, Wagner TU, Tanaka M, Schartl M (2009) A highly conserved cis-regulatory motif directs differential gonadal synexpression of Dmrt1 transcripts during gonad development. Nucleic Acids Res 37:1510–1520PubMedCrossRefGoogle Scholar
  10. Hornung U, Herpin A, Schartl M (2007) Expression of the male determining gene dmrt1bY and its autosomal coorthologue dmrt1a in medaka. Sex Dev 1:197–206PubMedCrossRefGoogle Scholar
  11. Huang X, Guo Y, Shui Y, Gao S, Yu H, Cheng H, Zhou R (2005) Multiple alternative splicing and differential expression of dmrt1 during gonad transformation of the rice field eel. Biol Reprod 73:1017–1024PubMedCrossRefGoogle Scholar
  12. Kim S, Bardwell VJ, Zarkower D (2007) Cell type-autonomous and non-autonomous requirements for Dmrt1 in postnatal testis differentiation. Dev Biol 307:314–327PubMedCrossRefGoogle Scholar
  13. Klüver N, Kondo M, Herpin A, Mitani H, Schartl M (2005) Divergent expression patterns of Sox9 duplicates in teleosts indicate a lineage specific subfunctionalization. Dev Genes Evol 215:297–305PubMedCrossRefGoogle Scholar
  14. Klüver N, Pfennig F, Pala I, Storch K, Schlieder M, Froschauer A, Gutzeit HO, Schartl M (2007) Differential expression of anti-Mullerian hormone (amh) and anti-Mullerian hormone receptor type II (amhrII) in the teleost medaka. Dev Dyn 236:271–281PubMedCrossRefGoogle Scholar
  15. Klüver N, Herpin A, Braasch I, Driessle J, Schartl M (2009) Regulatory back-up circuit of medaka Wt1 co-orthologs ensures PGC maintenance. Dev Biol 325:179–188PubMedCrossRefGoogle Scholar
  16. Kobayashi T, Matsuda M, Kajiura-Kobayashi H, Suzuki A, Saito N, Nakamoto M, Shibata N, Nagahama Y (2004) Two DM domain genes, DMY and DMRT1, involved in testicular differentiation and development in the medaka, Oryzias latipes. Dev Dyn 231:518–526PubMedCrossRefGoogle Scholar
  17. Kondo M, Nanda I, Hornung U, Schmid M, Schartl M (2004) Evolutionary origin of the medaka Y chromosome. Curr Biol 14:1664–1669PubMedCrossRefGoogle Scholar
  18. Kondo M, Hornung U, Nanda I, Imai S, Sasaki T, Shimizu A, Asakawa S, Hori H, Schmid M, Shimizu N, Schartl M (2006) Genomic organization of the sex-determining and adjacent regions of the sex chromosomes of medaka. Genome Res 16:815–826PubMedCrossRefGoogle Scholar
  19. Lutfalla G, Roest Crollius H, Brunet FG, Laudet V, Robinson-Rechavi M (2003) Inventing a sex-specific gene: a conserved role of DMRT1 in teleost fishes plus a recent duplication in the medaka Oryzias latipes resulted in DMY. J Mol Evol 57(suppl 1):S148–S153PubMedCrossRefGoogle Scholar
  20. Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature (Lond) 417:559–563CrossRefGoogle Scholar
  21. Matsuda M, Shinomiya A, Kinoshita M, Suzuki A, Kobayashi T, Paul-Prasanth B, Lau EL, Hamaguchi S, Sakaizumi M, Nagahama Y (2007) DMY gene induces male development in genetically female (XX) medaka fish. Proc Natl Acad Sci USA 104:3865–3870PubMedCrossRefGoogle Scholar
  22. Murphy MW, Zarkower D, Bardwell VJ (2007) Vertebrate DM domain proteins bind similar DNA sequences and can heterodimerize on DNA. BMC Mol Biol 8:58PubMedCrossRefGoogle Scholar
  23. Nakamoto M, Suzuki A, Matsuda M, Nagahama Y, Shibata N (2005) Testicular type Sox9 is not involved in sex determination but might be in the development of testicular structures in the medaka, Oryzias latipes. Biochem Biophys Res Commun 333:729–736PubMedCrossRefGoogle Scholar
  24. Nakamura S, Kobayashi D, Aoki Y, Yokoi H, Ebe Y, Wittbrodt J, Tanaka M (2006) Identification and lineage tracing of two populations of somatic gonadal precursors in medaka embryos. Dev Biol 295:678–688PubMedCrossRefGoogle Scholar
  25. Nakamura S, Aoki Y, Saito D, Kuroki Y, Fujiyama A, Naruse K, Tanaka M (2008) Sox9b/sox9a2-EGFP transgenic medaka reveals the morphological reorganization of the gonads and a common precursor of both the female and male supporting cells. Mol Reprod Dev 75:472–476PubMedCrossRefGoogle Scholar
  26. Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, Shan Z, Haaf T, Shimizu N, Shima A, Schmid M, Schartl M (2002) A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci USA 99:11778–11783PubMedCrossRefGoogle Scholar
  27. Nanda I, Hornung U, Kondo M, Schmid M, Schartl M (2003) Common spontaneous sex-reversed XX males of the medaka, Oryzias latipes. Genetics 163:245–251PubMedGoogle Scholar
  28. Ohmuro-Matsuyama Y, Matsuda M, Kobayashi T, Ikeuchi T, Nagahama Y (2003) Expression of DMY and DMRT1 in various tissues of the medaka (Oryzias latipes) [corrected]. Zool Sci 20:1395–1398PubMedCrossRefGoogle Scholar
  29. Otake H, Shinomiya A, Matsuda M, Hamaguchi S, Sakaizumi M (2006) Wild-derived XY sex-reversal mutants in the medaka, Oryzias latipes. Genetics 173:2083–2090PubMedCrossRefGoogle Scholar
  30. Paul-Prasanth B, Matsuda M, Lau EL, Suzuki A, Sakai F, Kobayashi T, Nagahama Y (2006) Knock-down of DMY initiates female pathway in the genetic male medaka, Oryzias latipes. Biochem Biophys Res Commun 351:815–819PubMedCrossRefGoogle Scholar
  31. Raymond CS, Murphy MW, O’Sullivan MG, Bardwell VJ, Zarkower D (2000) Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev 14:2587–2595PubMedCrossRefGoogle Scholar
  32. Sato T, Endo T, Yamahira K, Hamaguchi S, Sakaizumi M (2005) Induction of female-to-male sex reversal by high temperature treatment in medaka, Oryzias latipes. Zool Sci 22:985–988PubMedCrossRefGoogle Scholar
  33. Satoh N, Egami N (1972) Sex differentiation of germ cells in the teleost, Oryzias latipes, during normal embryonic development. J Embryol Exp Morphol 28:385–395PubMedGoogle Scholar
  34. Shinomiya A, Otake H, Togashi K, Hamaguchi S, Sakaizumi M (2004) Field survey of sex-reversals in the medaka, Oryzias latipes: genotypic sexing of wild populations. Zool Sci 21:613–619PubMedCrossRefGoogle Scholar
  35. Smith CA, Katz M, Sinclair AH (2003) DMRT1 is upregulated in the gonads during female-to-male sex reversal in ZW chicken embryos. Biol Reprod 68:560–570PubMedCrossRefGoogle Scholar
  36. Suzuki A, Nakamoto M, Kato Y, Shibata N (2005) Effects of estradiol-17beta on germ cell proliferation and DMY expression during early sexual differentiation of the medaka Oryzias latipes. Zool Sci 22:791–796PubMedCrossRefGoogle Scholar
  37. Tanaka M, Saito D, Morinaga C, Kurokawa H (2008) Cross talk between germ cells and gonadal somatic cells is critical for sex differentiation of the gonads in the teleost fish, medaka (Oryzias latipes). Dev Growth Differ 50:273–278PubMedCrossRefGoogle Scholar
  38. Volff JN, Zarkower D, Bardwell VJ, Schartl M (2003) Evolutionary dynamics of the DM domain gene family in metazoans. J Mol Evol 57:S241–S249PubMedCrossRefGoogle Scholar
  39. Winkler C, Hornung U, Kondo M, Neuner C, Duschl J, Shima A, Schartl M (2004) Developmentally regulated and non-sex-specific expression of autosomal dmrt genes in embryos of the medaka fish (Oryzias latipes). Mech Dev 121:997–1005PubMedCrossRefGoogle Scholar
  40. Yamaguchi A, Lee KH, Fujimoto H, Kadomura K, Yasumoto S, Matsuyama M (2006) Expression of the DMRT gene and its roles in early gonadal development of the Japanese pufferfish Takifugu rubripes. Comp Biochem Physiol Part D Genomics Proteomics 1:59–68PubMedCrossRefGoogle Scholar
  41. Yamamoto TO (1963) Induction of reversal in sex differentiation of YY zygotes in the medaka, Oryzias latipes. Genetics 48:293–306PubMedGoogle Scholar
  42. Yamamoto T-O (1975) Medaka (killifish) biology and strains. Keigaku, TokyoGoogle Scholar
  43. Ying M, Chen B, Tian Y, Hou Y, Li Q, Shang X, Sun J, Cheng H, Zhou R (2007) Nuclear import of human sexual regulator DMRT1 is mediated by importin-beta. Biochim Biophys Acta 1773:804–813PubMedCrossRefGoogle Scholar
  44. Yokoi H, Kobayashi T, Tanaka M, Nagahama Y, Wakamatsu Y, Takeda H, Araki K, Morohashi K, Ozato K (2002) Sox9 in a teleost fish, medaka (Oryzias latipes): evidence for diversified function of Sox9 in gonad differentiation. Mol Reprod Dev 63:5–16PubMedCrossRefGoogle Scholar
  45. Zhang J (2004) Evolution of DMY, a newly emergent male sex-determination gene of medaka fish. Genetics 166:1887–1895PubMedCrossRefGoogle Scholar
  46. Zhu L, Wilken J, Phillips NB, Narendra U, Chan G, Stratton SM, Kent SB, Weiss MA (2000) Sexual dimorphism in diverse metazoans is regulated by a novel class of intertwined zinc fingers. Genes Dev 14:1750–1764PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Department of Physiological Chemistry IUniversity of WürzburgWürzburgGermany

Personalised recommendations