Medaka pp 201-215 | Cite as

Double Anal Fin (Da): A Medaka Mutant Exhibiting a Mirror-Image Pattern Duplication of the Dorsal–Ventral Axis

  • Masato Ohtsuka
  • Hiroyuki Takeda
  • Atsuko Shimada


A medaka Double anal fin (Da) mutant, spontaneously isolated from the wild-type, exhibits a unique ventralizing phenotype consisting of a mirror-image duplication across the lateral midline in the dorsal trunk-tail region. No similar mutation has been reported in other model organisms. Hence, the Da mutant provides a unique model system for investigation of the mechanisms controlling the overall dorsal–ventral patterning of the vertebrate trunk-tail region. In this chapter, we introduce (1) a brief history of the Da mutant; (2) details of the morphological phenotype of Da; (3) positional cloning of the Da mutation; (4) the Da mutant in relation to fish evolution; and (5) Da as a potential model for human disease.


Bacterial Artificial Chromosome Bacterial Artificial Chromosome Clone Spina Bifida Neural Spine Spina Bifida Occulta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aruga J, Mizugishi K, Koseki H et al (1999) Zic1 regulates the patterning of vertebral arches in cooperation with Gli3. Mech Dev 89:141–150PubMedCrossRefGoogle Scholar
  2. Grinberg I, Northrup H, Ardinger H et al (2004) Heterozygous deletion of the linked genes ZIC1 and ZIC4 is involved in Dandy-Walker malformation. Nat Genet 36:1053–1055PubMedCrossRefGoogle Scholar
  3. Hammerschmidt M, Pelegri F, Mullins MC et al (1996) dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. Development (Camb) 123:95–102Google Scholar
  4. Ishikawa Y (1990) Development of caudal structures of a morphogenetic mutant (Da) in the teleost fish, medaka (Oryzias latipes). J Morphol 205:219–232CrossRefGoogle Scholar
  5. Ishikawa Y (2000) Medakafish as a model system for vertebrate developmental genetics. BioEssays 22:487–495PubMedCrossRefGoogle Scholar
  6. Kasahara M, Naruse K, Sasaki S et al (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature (Lond) 447:714–719CrossRefGoogle Scholar
  7. Ledent V (2002) Postembryonic development of the posterior lateral line in zebrafish. Development (Camb) 129:597–604Google Scholar
  8. Matsuda M, Kawato N, Asakawa S et al (2001) Construction of a BAC library derived from the inbred Hd-rR strain of the teleost fish, Oryzias latipes. Genes Genet Syst 76:61–63PubMedCrossRefGoogle Scholar
  9. Mitchell LE, Adzick NS, Melchionne J et al (2004) Spina bifida. Lancet 364:1885–1895PubMedCrossRefGoogle Scholar
  10. Naruse K, Fukamachi S, Mitani H et al (2000) A detailed linkage map of medaka, Oryzias latipes: comparative genomics and genome evolution. Genetics 154:1773–1784PubMedGoogle Scholar
  11. Ohtsuka M, Makino S, Yoda K et al (1999) Construction of a linkage map of the medaka (Oryzias latipes) and mapping of the Da mutant locus defective in dorsoventral patterning. Genome Res 9:1277–1287PubMedCrossRefGoogle Scholar
  12. Ohtsuka M, Kikuchi N, Nogami M et al (2002) Rapid screening of a novel arrayed medaka (Oryzias latipes) cosmid library. Mar Biotechnol (NY) 4:173–178CrossRefGoogle Scholar
  13. Ohtsuka M, Kikuchi N, Yokoi H et al (2004a) Possible roles of zic1 and zic4, identified within the medaka Double anal fin (Da) locus, in dorsoventral patterning of the trunk-tail region (related to phenotypes of the Da mutant). Mech Dev 121:873–882PubMedCrossRefGoogle Scholar
  14. Ohtsuka M, Kikuchi N, Ozato K et al (2004b) Comparative analysis of a 229-kb medaka genomic region, containing the zic1 and zic4 genes, with Fugu, human, and mouse. Genomics 83:1063–1071PubMedCrossRefGoogle Scholar
  15. Ohtsuka M, Horiuchi S, Kulski JK et al (2004c) CHOP: visualization of ‘wobbling’ and isolation of highly conserved regions from aligned DNA sequences. Nucleic Acids Res 32:W55–W58PubMedCrossRefGoogle Scholar
  16. Shuto T, Sekido K, Ohtsubo Y et al (1999) Dandy-Walker syndrome associated with occipital meningocele and spinal lipoma: case report. Neurol Med Chir (Tokyo) 39:544–547CrossRefGoogle Scholar
  17. Smith M, Hickman A, Amanze D et al (1994) Trunk neural crest origin of caudal fin mesenchyme in the zebrafish Brachydanio rerio. Proc R Soc Lond 256:137–145CrossRefGoogle Scholar
  18. Tamiya G, Wakamatsu Y, Ozato K (1997) An embryological study of ventralization of dorsal structures in the tail of medaka (Oryzias latipes) Da mutants. Dev Growth Differ 39:531–538PubMedCrossRefGoogle Scholar
  19. Tomita H (1975) Mutant genes in the medaka. In: Yamamoto T (ed) Medaka (killifish) biology and strains. Keigaku, TokyoGoogle Scholar
  20. Tucker AS, Slack JM (2004) Independent induction and formation of the dorsal and ventral fins in Xenopus laevis. Dev Dyn 230:461–467PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Masato Ohtsuka
    • 2
  • Hiroyuki Takeda
    • 1
  • Atsuko Shimada
    • 3
  1. 1.The Institute of Medical SciencesTokai UniversityIseharaJapan
  2. 2.Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
  3. 3.Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations