Medaka pp 173-184 | Cite as

Medaka Spontaneous Mutants for Body Coloration


People take a keen interest in colors on their body surface. Colors are also important in wild animals for successful survival and reproduction; for example, camouflage, mimicry, and sexual attraction for mating. Studies of body coloration have mainly been conducted using the mouse model, where more than 300 coat-color loci have been described. Zebrafish is another unique model for ­investigating pattern (stripe) formation in the skin. Medaka is a fish with a boring-brown ­coloration from which only tens of spontaneous mutants are available. However, the mutants have a rather long research history, from which several intriguing achievements have been made. I summarize these studies in this chapter.


Melanin Synthesis Oculocutaneous Albinism Nuptial Coloration Medaka Genome Orange Skin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I thank J. Jones of the University of Konstanz for her helpful comments on the manuscript.


  1. Aida T (1921) On the inheritance of color in a fresh-water fish, Aplocheilus latipes Temmick and Schlegel, with special reference to sex-linked inheritance. Genetics 6:554–573PubMedGoogle Scholar
  2. Brilliant MH, Gondo Y, Eicher EM (1991) Direct molecular identification of the mouse pink-eyed unstable mutation by genome scanning. Science 252:566–569PubMedCrossRefGoogle Scholar
  3. Fukada H, Ozaki Y, Pierce AL et al (2005) Identification of the salmon somatolactin receptor, a new member of the cytokine receptor family. Endocrinology 146:2354–2361PubMedCrossRefGoogle Scholar
  4. Fukamachi S, Meyer A (2007) Evolution of receptors for growth hormone and somatolactin in fish and land vertebrates: lessons from the lungfish and sturgeon orthologues. J Mol Evol 65:359–372PubMedCrossRefGoogle Scholar
  5. Fukamachi S, Shimada A, Shima A (2001) Mutations in the gene encoding B, a novel transporter protein, reduce melanin content in medaka. Nat Genet 28:381–385PubMedCrossRefGoogle Scholar
  6. Fukamachi S, Sugimoto M, Mitani H et al (2004a) Somatolactin selectively regulates proliferation and morphogenesis of neural-crest derived pigment cells in medaka. Proc Natl Acad Sci USA 101:10661–10666PubMedCrossRefGoogle Scholar
  7. Fukamachi S, Asakawa S, Wakamatsu Y et al (2004b) Conserved function of medaka pink-eyed dilution in melanin synthesis and its divergent transcriptional regulation in gonads among vertebrates. Genetics 168:1519–1527PubMedCrossRefGoogle Scholar
  8. Fukamachi S, Wakamatsu Y, Mitani H (2006) Medaka double mutants for color interfere and leucophore free: characterization of the xanthophore–somatolactin relationship using the leucophore free gene. Dev Genes Evol 216:152–157PubMedCrossRefGoogle Scholar
  9. Fukamachi S, Kinoshita M, Tsujimura T et al (2008) Rescue from oculocutaneous albinism type 4 using medaka slc45a2 cDNA driven by its own promoter. Genetics 178:761–769PubMedCrossRefGoogle Scholar
  10. Fukamachi S, Yada T, Meyer A, Kinoshita M (2009) Effects of constitutive expression of somatolactin alpha on skin pigmentation in medaka. Gene (Amst) 442:81–87CrossRefGoogle Scholar
  11. Fukamachi S, Kinoshita M, Aizawa K, Oda S, Meyer A, Miani H (2009) Dual control by a single gene of secondary sexual characters and mating preferences in medaka. BMC Biol 7:64CrossRefGoogle Scholar
  12. Goda M, Fujii R (1995) Blue chromatophores in two species of callionymid fish. Zool Sci 12:811–813CrossRefGoogle Scholar
  13. Hirose E, Matsumoto J (1993) Deficiency of the gene B impairs differentiation of melanophores in the medaka fish, Oryzias latipes: fine structure studies. Pigment Cell Res 6:45–51PubMedCrossRefGoogle Scholar
  14. Hyodo-Taguchi Y, Winkler C, Kurihara Y et al (1997) Phenotypic rescue of the albino mutation in the medakafish (Oryzias latipes) by a mouse tyrosinase transgene. Mech Dev 68:27–35PubMedCrossRefGoogle Scholar
  15. Inagaki H, Koga A, Bessho Y et al (1998) The tyrosinase gene from medakafish: transgenic expression rescues albino mutation. Pigment Cell Res 11:283–290PubMedCrossRefGoogle Scholar
  16. Kasahara M, Naruse K, Sasaki S (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature (Lond) 447:714–719CrossRefGoogle Scholar
  17. Kawakami K (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8:S7PubMedCrossRefGoogle Scholar
  18. Kelsh RN, Inoue C, Momoi A et al (2004) The Tomita collection of medaka pigmentation mutants as a resource for understanding neural crest cell development. Mech Dev 121:841–859PubMedCrossRefGoogle Scholar
  19. Koga A, Inagaki H, Bessho Y et al (1995) Insertion of a novel transposable element in the tyrosinase gene is responsible for an albino mutation in the medaka fish, Oryzias latipes. Mol Gen Genet 249:400–405PubMedCrossRefGoogle Scholar
  20. Koga A, Cheah FS, Hamaguchi S et al (2008) Germline transgenesis of zebrafish using the medaka Tol1 transposon system. Dev Dyn 237:2466–2474PubMedCrossRefGoogle Scholar
  21. Kondo S, Kuwahara Y, Kondo M et al (2001) The medaka rs-3 locus required for scale development encodes ectodysplasin-A receptor. Curr Biol 11:1202–1206PubMedCrossRefGoogle Scholar
  22. Loosli F, Winkler S, Burgtorf C et al (2001) Medaka eyeless is the key factor linking retinal determination and eye growth. Development (Camb) 128:4035–4044Google Scholar
  23. Matsumoto J, Akiyama T, Hirose E et al (1992) Expression and transmission of wild-type pigmentation in the skin of transgenic orange-colored variants of medaka (Oryzias latipes) bearing the gene for mouse tyrosinase. Pigment Cell Res 5:322–327PubMedCrossRefGoogle Scholar
  24. Mendel G (1866) Versuche über Pflanzen-Hybriden. Verh Naturforsch Ver Brünn 4:3–47Google Scholar
  25. Messenger JB (2001) Cephalopod chromatophores: neurobiology and natural history. Biol Rev Camb Philos Soc 76:473–528PubMedCrossRefGoogle Scholar
  26. Morgan TH (1910) Sex limited inheritance in Drosophila. Science 32:120–122PubMedCrossRefGoogle Scholar
  27. Nery LE, Castrucci AM (1997) Pigment cell signalling for physiological color change. Comp Biochem Physiol A Physiol 118:1135–1144PubMedCrossRefGoogle Scholar
  28. Newton JM, Cohen-Barak O, Hagiwara N et al (2001) Mutations in the human orthologue of the mouse underwhite gene (uw) underlie a new form of oculocutaneous albinism, OCA4. Am J Hum Genet 69:981–988PubMedCrossRefGoogle Scholar
  29. Ni-Komatsu L, Orlow SJ (2006) Heterologous expression of tyrosinase recapitulates the misprocessing and mistrafficking in oculocutaneous albinism type 2: effects of altering intracellular pH and pink-eyed dilution gene expression. Exp Eye Res 82:519–528PubMedCrossRefGoogle Scholar
  30. Ohtsuka M, Kikuchi N, Yokoi H et al (2004) Possible roles of zic1 and zic4, identified within the medaka Double anal fin (Da) locus, in dorsoventral patterning of the trunk-tail region (related to phenotypes of the Da mutant). Mech Dev 121:873–882PubMedCrossRefGoogle Scholar
  31. Ono M, Takayama Y, Rand-Weaver M et al (1990) cDNA cloning of somatolactin, a pituitary protein related to growth hormone and prolactin. Proc Natl Acad Sci USA 87:4330–4334PubMedCrossRefGoogle Scholar
  32. Ono H, Hirose E, Miyazaki K et al (1997) Transgenic medaka fish bearing the mouse tyrosinase gene: expression and transmission of the transgene following electroporation of the orange-colored variant. Pigment Cell Res 10:168–175PubMedCrossRefGoogle Scholar
  33. Protas ME, Hersey C, Kochanek D et al (2006) Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat Genet 38:107–111PubMedCrossRefGoogle Scholar
  34. Sabeti PC, Varilly P, Fry B et al (2007) Genome-wide detection and characterization of positive selection in human populations. Nature (Lond) 449:913–918CrossRefGoogle Scholar
  35. Sauka-Spengler T, Bronner-Fraser M (2008) A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol 9:557–568PubMedCrossRefGoogle Scholar
  36. Shibahara S, Okinaga S, Tomita Y et al (1990) A point mutation in the tyrosinase gene of BALB/c albino mouse causing the cysteine–serine substitution at position 85. Eur J Biochem 189:455–461PubMedCrossRefGoogle Scholar
  37. Shima A, Shimada A (1991) Development of a possible nonmammalian test system for radiation-induced germ-cell mutagenesis using a fish, the Japanese medaka (Oryzias latipes). Proc Natl Acad Sci USA 88:2545–2549PubMedCrossRefGoogle Scholar
  38. Shimada A, Shima A (2001) High incidence of mosaic mutations induced by irradiating paternal germ cells of the medaka fish, Oryzias latipes. Mutat Res 495:33–42PubMedCrossRefGoogle Scholar
  39. Shimada A, Shima A (2004) Transgenerational genomic instability as revealed by a somatic mutation assay using the medaka fish. Mutat Res 552:119–124PubMedCrossRefGoogle Scholar
  40. Shimada A, Fukamachi S, Wakamatsu Y et al (2002) Induction and characterization of mutations at the b locus of the medaka, Oryzias latipes. Zool Sci 19:411–417PubMedCrossRefGoogle Scholar
  41. Sugimoto M (2002) Morphological color changes in fish: regulation of pigment cell density and morphology. Microsc Res Tech 58:496–503PubMedCrossRefGoogle Scholar
  42. Sugimoto M, Uchida N, Hatayama M (2000) Apoptosis in skin pigment cells of the medaka, Oryzias latipes (Teleostei), during long-term chromatic adaptation: the role of sympathetic innervation. Cell Tissue Res 301:205–216PubMedCrossRefGoogle Scholar
  43. Sulem P, Gudbjartsson DF, Stacey SN et al (2007) Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat Genet 39:1443–1452PubMedCrossRefGoogle Scholar
  44. Takeuchi T (1969) A study of genes in the gray medaka, Oryzias latipes, in reference to body color. Biol J Okayama Univ 15:1–24Google Scholar
  45. Tomita H (1975) Mutant genes in the medaka. In: Yamamoto T (ed) Medaka (killifish) biology and strains. Yugakusha, TokyoGoogle Scholar
  46. Tomita H (1992) The lists of the mutants and strains of the medaka, common gambusia, silver crucian carp, goldfish and golden venus fish maintained in the Laboratory of Freshwater Fish Stocks, Nagoya University. Fish Biol J Medaka 4:45–47Google Scholar
  47. Wada H, Shimada A, Fukamachi S et al (1998) Sex-linked inheritance of the lf locus in the medaka fish (Oryzias latipes). Zool Sci 15:123–126PubMedCrossRefGoogle Scholar
  48. Wakamatsu Y, Pristyazhnyuk S, Kinoshita M et al (2001) The see-through medaka: a fish model that is transparent throughout life. Proc Natl Acad Sci USA 98:10046–10050PubMedCrossRefGoogle Scholar
  49. Yamamoto T (1969) Inheritance of albinism in the medaka, Oryzias latipes, with special reference to gene interaction. Genetics 62:797–809PubMedGoogle Scholar
  50. Yamamoto T (ed) (1975) Medaka (killifish) biology and strains. Keigaku, TokyoGoogle Scholar
  51. Yamamoto T, Oikawa T (1973) Linkage between albino gene (i) and color interferer (ci) in the medaka, Oryzias latipes. Jpn J Genet 48:315–329CrossRefGoogle Scholar
  52. Yu JF, Fukamachi S, Mitani H et al (2006) Reduced expression of vps11 causes less pigmentation in medaka, Oryzias latipes. Pigment Cell Res 19:628–634PubMedCrossRefGoogle Scholar
  53. Zhu Y, Stiller JW, Shaner MP et al (2004) Cloning of somatolactin alpha and beta cDNAs in zebrafish and phylogenetic analysis of two distinct somatolactin subtypes in fish. J Endocrinol 182:509–518PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences,Japan Women’s University, Bunkyo-ku,TokyoJapan

Personalised recommendations