Medaka pp 157-172 | Cite as

p53-Deficient Medaka Created by TILLING


Because loss-of-function experiments in medaka and zebrafish had relied on morpholino, whose effect is transient and lasts only a few days post fertilization, developmental biology has been the major target of research using these small laboratory fish. With the advent of targeting-induced local lesions in genome (TILLING) technology, the teleost has reemerged as a model animal in which the specific genes can be disrupted. The potential research field is now expanded to slow and time-consuming biological phenomena such as carcinogenesis, aging, and degeneration. p53 is a multifunctional transcription factor involved in such various biological processes. Among other vertebrates, medaka is especially suited for the TILLING approach because of the compact genome and inbred strains, which makes amplicon design and screening fast and efficient. We have generated several lines of p53 mutant medaka, including two nonsense mutants. These lines showed the impaired transcriptional regulation of the cell cycle and apoptosis and the increased incidence of spontaneous tumorigenesis. The mutant medaka isolated by TILLING will occupy an important and valuable position in various research fields in the future.


Acridine Orange Morpholino Antisense Oligonucleotide Median Lifespan Target Gene Induction Medaka Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aoki K, Matsudaira H (1977) Induction of hepatic tumors in a teleost (Oryzias latipes) after treatment with methylazoxymethanol acetate: brief communication. J Natl Cancer Inst 59:1747–1749PubMedGoogle Scholar
  2. Berghmans S, Murphey RD, Wienholds E, Neuberg D, Kutok JL, Fletcher CD, Morris JP, Liu TX, Schulte-Merker S, Kanki JP, Plasterk R, Zon LI, Look AT (2005) tp53 Mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci USA 102:407–412PubMedCrossRefGoogle Scholar
  3. Chen S, Hong Y, Scherer SJ, Schartl M (2001) Lack of ultraviolet-light inducibility of the medaka fish (Oryzias latipes) tumor suppressor gene p53. Gene (Amst) 264:197–203CrossRefGoogle Scholar
  4. Chen J, Ruan H, Ng SM, Gao C, Soo HM, Wu W, Zhang Z, Wen Z, Lane DP, Peng J (2005) Loss of function of def selectively up-regulates Delta113p53 expression to arrest expansion growth of digestive organs in zebrafish. Genes Dev 19:2900–2911PubMedCrossRefGoogle Scholar
  5. Cho Y, Gorina S, Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346–355PubMedCrossRefGoogle Scholar
  6. Craig DW, Pearson JV, Szelinger S, Sekar A, Redman M, Corneveaux JJ, Pawlowski TL, Laub T, Nunn G, Stephan DA, Homer N, Huentelman MJ (2008) Identification of genetic variants using bar-coded multiplexed sequencing. Nat Methods 5:887–893PubMedCrossRefGoogle Scholar
  7. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature (Lond) 356:215–221CrossRefGoogle Scholar
  8. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708PubMedCrossRefGoogle Scholar
  9. Feitsma H, Cuppen E (2008) Zebrafish as a cancer model. Mol Cancer Res 6:685–694PubMedCrossRefGoogle Scholar
  10. Furutani-Seiki M, Sasado T, Morinaga C, Suwa H, Niwa K, Yoda H, Deguchi T, Hirose Y, Yasuoka A, Henrich T, Watanabe T, Iwanami N, Kitagawa D, Saito K, Asaka S, Osakada M, Kunimatsu S, Momoi A, Elmasri H, Winkler C, Ramialison M, Loosli F, Quiring R, Carl M, Grabher C, Winkler S, Del Bene F, Shinomiya A, Kota Y, Yamanaka T, Okamoto Y, Takahashi K, Todo T, Abe K, Takahama Y, Tanaka M, Mitani H, Katada T, Nishina H, Nakajima N, Wittbrodt J, Kondoh H (2004) A systematic genome-wide screen for mutations affecting organogenesis in medaka, Oryzias latipes. Mech Dev 121:647–658PubMedCrossRefGoogle Scholar
  11. Harms K, Nozell S, Chen X (2004) The common and distinct target genes of the p53 family transcription factors. Cell Mol Life Sci 61:822–842PubMedCrossRefGoogle Scholar
  12. Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin IT, Takeda H, Morishita S, Kohara Y (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature (Lond) 447:714–719CrossRefGoogle Scholar
  13. Krause MK, Rhodes LD, Van Beneden RJ (1997) Cloning of the p53 tumor suppressor gene from the Japanese medaka (Oryzias latipes) and evaluation of mutational hotspots in MNNG-exposed fish. Gene (Amst) 189:101–106CrossRefGoogle Scholar
  14. Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137:609–622PubMedCrossRefGoogle Scholar
  15. Li FP, Fraumeni JF Jr, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA, Miller RW (1988) A cancer family syndrome in twenty-four kindreds. Cancer Res 48:5358–5362PubMedGoogle Scholar
  16. Masahito P, Aoki K, Egami N, Ishikawa T, Sugano H (1989) Life-span studies on spontaneous tumor development in the medaka (Oryzias latipes). Jpn J Cancer Res 80:1058–1065PubMedCrossRefGoogle Scholar
  17. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701PubMedCrossRefGoogle Scholar
  18. Moens CB, Donn TM, Wolf-Saxon ER, Ma TP (2008) Reverse genetics in zebrafish by TILLING. Brief Funct Genomic Proteomic 7:454–459PubMedCrossRefGoogle Scholar
  19. Taniguchi Y, Takeda S, Furutani-Seiki M, Kamei Y, Todo T, Sasado T, Deguchi T, Kondoh H, Mudde J, Yamazoe M, Hidaka M, Mitani H, Toyoda A, Sakaki Y, Plasterk RH, Cuppen E (2006) Generation of medaka gene knockout models by target-selected mutagenesis. Genome Biol 7:R116PubMedCrossRefGoogle Scholar
  20. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431PubMedCrossRefGoogle Scholar
  21. Winkler C, Wittbrodt J, Lammers R, Ullrich A, Schartl M (1994) Ligand-dependent tumor induction in medakafish embryos by a Xmrk receptor tyrosine kinase transgene. Oncogene 9:1517–1525PubMedGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Department of Preventive Medicine and Public HealthKeio University School of MedicineTokyo Japan

Personalised recommendations