Medaka pp 1-16 | Cite as

A Glance at the Past of Medaka Fish Biology

  • Hiroshi Hori


The physiology, embryology, and genetics of medaka have been extensively studied for the past 100 years. Here we review the past of medaka fish biology as genetic model systems for early development, pigmentation, sex determination, and human diseases.


Inbred Strain Draft Genome Sequence Primary Ciliary Dyskinesia Oculocutaneous Albinism Primary Ciliary Dyskinesia Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aida T (1921) On the inheritance of color in a fresh-water fish, Aplocheilus latipes Temminck and Schlegel, with special reference to sex-linked inheritance. Genetics 6:554–573PubMedGoogle Scholar
  2. Aida T (1930) Further genetical studies of Aplocheilus latipes. Genetics 15:1–16PubMedGoogle Scholar
  3. Aida T (1936) Sex reversal in Aplocheilus latipes and a new explanation of sex differentiation. Genetics 21:136–153PubMedGoogle Scholar
  4. Asakawa K, Kawakami K (2009) The Tol2-mediated Gal4-UAS method for gene and enhancer trapping in zebrafish. Methods 49:275–281PubMedCrossRefGoogle Scholar
  5. Ault JG (1996) Contributions of insect systems to the chromosome theory of inheritance and to our understanding of chromosome behavior on the spindle. Int J Insect Morphol Embryol 25:93–114CrossRefGoogle Scholar
  6. Baroiller JF, Guien Y, Fostier A (1999) Endocrine and environmental aspects of sex differentiation in fish. Cell Mol Life Sci 55:910–931CrossRefGoogle Scholar
  7. Bridges CB (1921) Triploid intersexes in Drosophila melanogaster. Science 54:252–254PubMedCrossRefGoogle Scholar
  8. Cheng KC (2008) Skin color in fish and humans: impacts on science and society. Zebrafish 5:237–242PubMedCrossRefGoogle Scholar
  9. Cline TW, Meyer BJ (1996) Vive la difference: males vs. females in flies vs. worms. Annu Rev Genet 30:637–702PubMedCrossRefGoogle Scholar
  10. Egami N, Yamagami K, Shima A (1990) Biology of the medaka (in Japanese). Tokyo University Press, TokyoGoogle Scholar
  11. Fujii T, Shimada T (2007) Sex determination in the silkworm, Bombyx mori: a female determinant on the W chromosome and the sex-determining gene cascade. Semin Cell Dev Biol 18:379–388PubMedCrossRefGoogle Scholar
  12. Fukamachi S, Shimada A, Shima A (2001) Mutations in the gene encoding B, a novel transporter protein, reduce melanin content in medaka. Nat Genet 28:381–385PubMedCrossRefGoogle Scholar
  13. Fukamachi S, Asakawa S, Wakamatsu Y, Shimizu N, Mitani H, Shima A (2004) Conserved ­function of medaka pink-eyed dilution in melanin synthesis and its divergent transcriptional regulation in gonads among vertebrates. Genetics 168:1519–1527PubMedCrossRefGoogle Scholar
  14. Furutani-Seiki M, Sasado T, Morinaga C, Suwa H, Niwa K, Yoda H, Deguchi T, Hirose Y, Yasuoka A, Henrich T, Watanabe T, Iwanami N, Kitagawa D, Saito K, Asaka S, Osakada M, Kunimatsu S, Momoi A, Elmasri H, Winkler C, Ramialison M, Loosli F, Quiring R, Carl M, Grabher C, Winkler S, Del Bene F, Shinomiya A, Kota Y, Yamanaka T, Okamoto Y, Takahashi K, Todo T, Abe K, Takahama Y, Tanaka M, Mitani H, Katada T, Nishina H, Nakajima N, Wittbrodt J, Kondoh H (2004) A systematic genome-wide screen for mutations affecting organogenesis in medaka, Oryzias latipes. Mech Dev 121:647–658PubMedCrossRefGoogle Scholar
  15. Hashimoto H, Miyamoto R, Watanabe N, Shiba D, Ozato K, Inoue C, Kubo Y, Koga A, Jindo T, Narita T, Naruse K, Ohishi K, Nogata K, Shin-I T, Asakawa S, Shimizu N, Miyamoto T, Mochizuki T, Yokoyama T, Hori H, Takeda H, Kohara Y, Wakamatsu Y (2009) Polycystic kidney disease in the medaka (Oryzias latipes) pc mutant caused by a mutation in the Gli-Similar3 (glis3) gene. PLoS One 4:e6299PubMedCrossRefGoogle Scholar
  16. Herpin A, Schartl M (2008) Regulatory putsches create new ways of determining sexual development. EMBO Rep 9:966–968PubMedCrossRefGoogle Scholar
  17. Hinton DE, Kullman SW, Hardman RC, Volz DC, Chen PJ, Carney M, Bencic DC (2005) Resolving mechanisms of toxicity while pursuing ecotoxicological relevance? Mar Pollut Bull 51:635–648PubMedCrossRefGoogle Scholar
  18. Hyodo-Taguchi Y, Egami N (1985) Establishment of inbred strains of the medaka Oryzias latipes and the usefulness of the strains for biomedical research. Zool Sci 2:305–316Google Scholar
  19. Ishikawa M (1916) Medaka no taishoku no iden ni tsuite (On the inheritance of body colors in the medaka, Oryzias latipes). Fukuoka Ikadaigaku Zasshi (J Fukuoka Med Coll 9:259–267 (in Japanese)Google Scholar
  20. Ishikawa Y, Hyodo-Taguchi Y, Tatsumi K (1997) Medaka fish for mutant screens. Nature (Lond) 386:234CrossRefGoogle Scholar
  21. Iwamatsu T (2006) The integrated book for the biology of the medaka, 2nd edn. Daigaku Kyoiku, Tokyo (in Japanese)Google Scholar
  22. Jacobs PA, Strong JA (1959) A case of human intersexuality having a possible XXY sex-determining mechanism. Nature (Lond) 183:302–303CrossRefGoogle Scholar
  23. Jordan DS, Snyder JO (1906) A review of the Poeciliidae or killifishes of Japan. Proc US Natl Mus 31:287–290CrossRefGoogle Scholar
  24. Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin-I T, Takeda H, Morishita S, Kohara Y (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature (Lond) 447:714–719CrossRefGoogle Scholar
  25. Kelsh RN, Inoue C, Momoi A, Kondoh H, Furutani-Seiki M, Ozato K, Wakamatsu Y (2004) The Tomita collection of medaka pigmentation mutants as a resource for understanding neural crest cell development. Mech Dev 121:841–859PubMedCrossRefGoogle Scholar
  26. Kimura T, Shimada A, Sakai N, Mitani H, Naruse K, Takeda H, Inoko H, Tamiya G, Shinya M (2007) Genetic analysis of craniofacial traits in the medaka. Genetics 177:2379–2388PubMedCrossRefGoogle Scholar
  27. Koga A, Hori H (1997) Albinism due to transposable element insertion in fish. Pigment Cell Res 10:377–381PubMedCrossRefGoogle Scholar
  28. Koga A, Inagaki H, Bessho Y, Hori H (1995) Insertion of a novel transposable element in the tyrosinase gene is responsible for an albino mutation in the medaka fish, Oryzias latipes. Mol Gen Genet 249:400–405PubMedCrossRefGoogle Scholar
  29. Koga A, Suzuki M, Inagaki H, Bessho Y, Hori H (1996) Transposable element in fish. Nature (Lond) 383:30CrossRefGoogle Scholar
  30. Kondo S, Kuwahara Y, Kondo M, Naruse K, Mitani H, Wakamatsu Y, Ozato K, Asakawa S, Shimizu N, Shima A (2001) The medaka rs-3 locus required for scale development encodes ectodysplasin-A receptor. Curr Biol 11:1202–1206PubMedCrossRefGoogle Scholar
  31. Kurokawa H, Saito D, Nakamura S, Katoh-Fukui Y, Ohta K, Baba T, Morohashi K, Tanaka M (2007) Germ cells are essential for sexual dimorphism in the medaka gonad. Proc Natl Acad Sci USA 104:16958–16963PubMedCrossRefGoogle Scholar
  32. Loosli F, Winkler S, Burgtorf C, Wurmbach E, Ansorge W, Henrich T, Grabher C, Arendt D, Carl M, Krone A, Grzebisz E, Wittbrodt J (2001) Medaka eyeless is the key factor linking retinal determination and eye growth. Development (Camb) 128:4035–4044Google Scholar
  33. Marin I, Baker BS (1998) The evolutionary dynamics of sex determination. Science 281:1990–1994PubMedCrossRefGoogle Scholar
  34. Matsuda M, Kawato N, Asakawa S, Shimizu N, Nagahama Y, Hamaguchi S, Sakaizumi M, Hori H (2001) Construction of a BAC library derived from the inbred Hd-rR strain of the teleost fish, Oryzias latipes. Genes Genet Syst 76:61–63PubMedCrossRefGoogle Scholar
  35. Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature (Lond) 417:559–563CrossRefGoogle Scholar
  36. Nakamura S, Kobayashi K, Nishimura T, Higashijima S, Tanaka M (2010) Identification of germline stem cells in the ovary of the teleost medaka. Science 328:1561–1563PubMedCrossRefGoogle Scholar
  37. Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, Shan Z, Haaf T, Shimizu N, Shima A, Schmid M, Schartl M (2002) A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci USA 99:11778–11783PubMedCrossRefGoogle Scholar
  38. Naruse K, Fukamachi S, Mitani H, Kondo M, Matsuoka T, Kondo S, Hanamura N, Morita Y, Hasegawa K, Nishigaki R, Shimada A, Wada H, Kusakabe T, Suzuki N, Kinoshita M, Kanamori A, Terado T, Kimura H, Nonaka M, Shima A (2000) A detailed linkage map of medaka, Oryzias latipes: comparative genomics and genome evolution. Genetics 154:1773–1784PubMedGoogle Scholar
  39. Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H (2004) Medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14:820–828PubMedCrossRefGoogle Scholar
  40. Ohtsuka M, Kikuchi N, Yokoi H, Kinoshita M, Wakamatsu Y, Ozato K, Takeda H, Inoko H, Kimura M (2004) Possible roles of zic1 and zic4, identified within the medaka Double anal fin (Da) locus, in dorsoventral patterning of the trunk-tail region (related to phenotypes of the Da mutant). Mech Dev 121:873–882PubMedCrossRefGoogle Scholar
  41. Okamoto H, Kuwada JY (1991) Outgrowth by fin motor axons in wild type and a finless mutant of the Japanese medaka fish. Dev Biol 146:49–61PubMedCrossRefGoogle Scholar
  42. Omran H, Kobayashi D, Olbrich H, Tsukahara T, Loges NT, Hagiwara H, Zhang Q, Leblond G, O’Toole E, Hara C, Mizuno H, Kawano H, Fliegauf M, Yagi T, Koshida S, Miyawaki A, Zentgraf H, Seithe H, Reinhardt R, Watanabe Y, Kamiya R, Mitchell DR, Takeda H (2008) Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature (Lond) 456:611–616CrossRefGoogle Scholar
  43. Packer A (2001) Medaka on the move. Nat Genet 28:302PubMedCrossRefGoogle Scholar
  44. Raymond CS, Murphy MW, O’Sullivan MG, Bardwell VJ, Zarkower D (2000) Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev 14:2587–2595PubMedCrossRefGoogle Scholar
  45. Rembold M, Loosli F, Adams RJ, Wittbrodt J (2006) Individual cell migration serves as the driving force for optic vesicle evagination. Science 313:1130–1134PubMedCrossRefGoogle Scholar
  46. Roy S (2009) The motile cilium in development and disease: emerging new insights. BioEssays 31:694–699PubMedCrossRefGoogle Scholar
  47. Shima A, Shimada A (1991) Development of a possible nonmammalian test system for radiation-induced germ-cell mutagenesis using a fish, the Japanese medaka (Oryzias latipes). Proc Natl Acad Sci USA 88:2545–2549PubMedCrossRefGoogle Scholar
  48. Shima A, Shimada A (1994) The Japanese medaka, Oryzias latipes, as a new model organism for studying environmental germ-cell mutagenesis. Environ Health Perspect 102(suppl 12):33–35PubMedCrossRefGoogle Scholar
  49. Shimada A, Fukamachi S, Wakamatsu Y, Ozato K, Shima A (2002) Induction and characterization of mutations at the b locus of the medaka, Oryzias latipes. Zool Sci 19:411–417PubMedCrossRefGoogle Scholar
  50. Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovell-Badge R, Goodfellow PN (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature (Lond) 346:240–244CrossRefGoogle Scholar
  51. Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie PG, Doran TJ, Sinclair AH (2009) The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature (Lond) 461:267–271CrossRefGoogle Scholar
  52. Takehana Y, Naruse K, Sakaizumi M (2005) Molecular phylogeny of the medaka fishes genus Oryzias (Beloniformes: Adrianichthyidae) based on nuclear and mitochondrial DNA sequences. Mol Phylogenet Evol 36:417–428PubMedCrossRefGoogle Scholar
  53. Temminck CJ, Schlegel H (1846) Siebold’s Fauna Japonica, Pisces. Lyden Museum, LydenGoogle Scholar
  54. Toyama K (1916) Ichinino Mendel seisitu ni tsuite (On some Mendelian characters). Nippon Ikusyugakkai Hokoku (Rep Jpn Breed Soc) 1:1–9Google Scholar
  55. Urushitani H, Katsu Y, Kato Y, Tooi O, Santo N, Kawashima Y, Ohta Y, Kisaka Y, Lange A, Tyler CR, Johnson RD, Iguchi T (2007) Medaka (Oryzias latipes) for use in evaluating developmental effects of endocrine active chemicals with special reference to gonadal intersex (testis–ova). Environ Sci 14:211–233PubMedGoogle Scholar
  56. Uwa H (1990) Karyotype and evolution. In: Egami N, Yamagami K, Shima A (eds) Biology of the medaka. Tokyo University Press, Tokyo, pp 162–182 (review in Japanese)Google Scholar
  57. Wakamatsu Y, Pristyazhnyuk S, Kinoshita M, Tanaka M, Ozato K (2001) The see-through medaka: a fish model that is transparent throughout life. Proc Natl Acad Sci USA 98:10046–10050PubMedCrossRefGoogle Scholar
  58. Wilkins AS (1995) Moving up the hierarchy: a hypothesis on the evolution of a genetic sex determination pathway. BioEssays 17:71–77PubMedCrossRefGoogle Scholar
  59. Winkler S, Loosli F, Henrich T, Wakamatsu Y, Wittbrodt J (2000) The conditional medaka mutation eyeless uncouples patterning and morphogenesis of the eye. Development (Camb) 127:1911–1919Google Scholar
  60. Wittbrodt J, Shima A, Schartl M (2002) Medaka—a model organism from the Far East. Nat Rev Genet 3:53–64PubMedCrossRefGoogle Scholar
  61. Yamamoto T (1953) Artificially induced sex-reversal in genotypic males of the medaka (Oryzias latipes). J Exp Zool 123:603–616CrossRefGoogle Scholar
  62. Yamamoto T (1975) Medaka (killifish) biology and strains. Keigaku, TokyoGoogle Scholar
  63. Yokoi H, Shimada A, Carl M, Takashima S, Kobayashi D, Narita T, Jindo T, Kimura T, Kitagawa T, Kage T, Sawada A, Naruse K, Asakawa S, Shimizu N, Mitani H, Shima A, Tsutsumi M, Hori H, Wittbrodt J, Saga Y, Ishikawa Y, Araki K, Takeda H (2007) Mutant analyses reveal different functions of fgfr1 in medaka and zebrafish despite conserved ligand–receptor relationships. Dev Biol 304:326–337PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Laboratory of Evolutionary Genetics, Center for Gene ResearchNagoya UniversityNagoyaJapan

Personalised recommendations