Osteocytes in Mechanosensing: Insights from Mouse Models and Human Patients

  • Ken Watanabe
  • Kyoji Ikeda


The mechanical properties of bone are essential to its function, and bone remodeling as well as modeling is under mechanical control. Accumulating evidence points to the role of osteocytes in the mechanosensing activity of bone, osteocytes being cells which are deeply embedded in mineralized matrix. Compared with the wealth of knowledge on the differentiation and function of osteoclasts and osteoblasts on the bone surface, the mechanism by which mechanical force is sensed and converted to biochemical signals by osteocytes remained “buried” for a long time. Findings from recent mouse genetics studies, however, have started to dig up the molecular and cellular basis of mechanotransduction in living bone. Here we introduce seminal findings from genetically engineered mouse models and osteocyte-ablated mice, and discuss the role of osteocytes in mechanosensing.


Diphtheria Toxin RANKL Expression Hindlimb Suspension Empty Lacuna Cleidocranial Dysplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Sunao Takeshita (NCGG) for comments on the manuscript. This work was supported by a grant from the program Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO) of Japan (#06-31 to K.I.) and a grant from the Mitsubishi Foundation (to K.I.). Pacific Edit reviewed the manuscript prior to submission.


  1. Abu EO, Horner A, Kusec V, Triffitt JT, Compston JE (2000) The localization of the functional glucocorticoid receptor alpha in human bone. J Clin Endocrinol Metab 85(2)  :  883–889PubMedCrossRefGoogle Scholar
  2. Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, Manolagas SC, Bellido T (2006) Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res 21(4)  :  605–615PubMedCrossRefGoogle Scholar
  3. Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, Lacza C, Wuyts W, Van Den Ende J, Willems P, Paes-Alves AF, Hill S, Bueno M, Ramos FJ, Tacconi P, Dikkers FG, Stratakis C, Lindpaintner K, Vickery B, Foernzler D, Van Hul W (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10(5)  :  537–543PubMedCrossRefGoogle Scholar
  4. Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O’Brien CA, Manolagas SC, Jilka RL (2005) Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146(11)  :  4577–4583PubMedCrossRefGoogle Scholar
  5. Bensamoun SF, Hawse JR, Subramaniam M, Ilharreborde B, Bassillais A, Benhamou CL, Fraser DG, Oursler MJ, Amadio PC, An KN, Spelsberg TC (2006) TGFbeta inducible early gene-1 knockout mice display defects in bone strength and microarchitecture. Bone 39(6)  :  1244–1251PubMedCrossRefGoogle Scholar
  6. Bikle DD, Halloran BP (1999) The response of bone to unloading. J Bone Miner Metab 17(4)  :  233–244PubMedCrossRefGoogle Scholar
  7. Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42(4)  :  606–615PubMedCrossRefGoogle Scholar
  8. Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y, Alisch RS, Gillett L, Colbert T, Tacconi P, Galas D, Hamersma H, Beighton P, Mulligan J (2001) Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 68(3)  :  577–589PubMedCrossRefGoogle Scholar
  9. Chambers TJ, Fox S, Jagger CJ, Lean JM, Chow JW (1999) The role of prostaglandins and nitric oxide in the response of bone to mechanical forces. Osteoarthr Cartil 7(4)  :  422–423PubMedCrossRefGoogle Scholar
  10. Chow JW, Fox S, Jagger CJ, Chambers TJ (1998) Role for parathyroid hormone in mechanical responsiveness of rat bone. Am J Physiol 274(1 Pt 1)  :  E146–E154PubMedGoogle Scholar
  11. Dalsky GP, Stocke KS, Ehsani AA, Slatopolsky E, Lee WC, Birge SJ Jr (1988) Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Intern Med 108(6)  :  824–828PubMedGoogle Scholar
  12. Doty SB, Morey-Holton ER, Durnova GN, Kaplansky AS (1990) Cosmos 1887: morphology, histochemistry, and vasculature of the growing rat tibia. FASEB J 4(1)  :  16–23PubMedGoogle Scholar
  13. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89(5)  :  747–754PubMedCrossRefGoogle Scholar
  14. Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38(11)  :  1310–1315PubMedCrossRefGoogle Scholar
  15. Frost HM (1960a) In vivo osteocyte death. J Bone Joint Surg Am 42-A  :  138–143PubMedGoogle Scholar
  16. Frost HM (1960b) Micropetrosis. J Bone Joint Surg Am 42-A  :  144–150PubMedGoogle Scholar
  17. Hawse JR, Iwaniec UT, Bensamoun SF, Monroe DG, Peters KD, Ilharreborde B, Rajamannan NM, Oursler MJ, Turner RT, Spelsberg TC, Subramaniam M (2008) TIEG-null mice display an osteopenic gender-specific phenotype. Bone 42(6)  :  1025–1031PubMedCrossRefGoogle Scholar
  18. Heino TJ, Hentunen TA, Vaananen HK (2002) Osteocytes inhibit osteoclastic bone resorption through transforming growth factor-beta: enhancement by estrogen. J Cell Biochem 85(1)  :  185–197PubMedCrossRefGoogle Scholar
  19. Imai S, Heino TJ, Hienola A, Kurata K, Buki K, Matsusue Y, Vaananen HK, Rauvala H (2009) Osteocyte-derived HB-GAM (pleiotrophin) is associated with bone formation and mechanical loading. Bone 44(5)  :  785–794PubMedCrossRefGoogle Scholar
  20. Inoue K, Mikuni-Takagaki Y, Oikawa K, Itoh T, Inada M, Noguchi T, Park JS, Onodera T, Krane SM, Noda M, Itohara S (2006) A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism. J Biol Chem 281(44)  :  33814–33824PubMedCrossRefGoogle Scholar
  21. Jagger CJ, Chow JW, Chambers TJ (1996) Estrogen suppresses activation but enhances formation phase of osteogenic response to mechanical stimulation in rat bone. J Clin Invest 98(10)  :  2351–2357PubMedCrossRefGoogle Scholar
  22. Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2(4)  :  389–406PubMedCrossRefGoogle Scholar
  23. Keller H, Kneissel M (2005) SOST is a target gene for PTH in bone. Bone 37(2)  :  148–158PubMedCrossRefGoogle Scholar
  24. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89(5)  :  755–764PubMedCrossRefGoogle Scholar
  25. Kousteni S, Bellido T, Plotkin LI, O’Brien CA, Bodenner DL, Han L, Han K, DiGregorio GB, Katzenellenbogen JA, Katzenellenbogen BS, Roberson PK, Weinstein RS, Jilka RL, Manolagas SC (2001) Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104(5)  :  719–730PubMedGoogle Scholar
  26. Lean JM, Jagger CJ, Chambers TJ, Chow JW (1995) Increased insulin-like growth factor I mRNA expression in rat osteocytes in response to mechanical stimulation. Am J Physiol 268(2 Pt 1)  :  E318–E327PubMedGoogle Scholar
  27. Lean JM, Mackay AG, Chow JW, Chambers TJ (1996) Osteocytic expression of mRNA for c-fos and IGF-I: an immediate early gene response to an osteogenic stimulus. Am J Physiol 270(6 Pt 1)  :  E937–E945PubMedGoogle Scholar
  28. Lee K, Jessop H, Suswillo R, Zaman G, Lanyon L (2003) Endocrinology: bone adaptation requires oestrogen receptor-alpha. Nature 424(6947)  :  389PubMedCrossRefGoogle Scholar
  29. Leupin O, Kramer I, Collette NM, Loots GG, Natt F, Kneissel M, Keller H (2007) Control of the SOST bone enhancer by PTH using MEF2 transcription factors. J Bone Miner Res 22(12)  :  1957–1967PubMedCrossRefGoogle Scholar
  30. Li X, Liu P, Liu W, Maye P, Zhang J, Zhang Y, Hurley M, Guo C, Boskey A, Sun L, Harris SE, Rowe DW, Ke HZ, Wu D (2005) Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet 37(9)  :  945–952PubMedCrossRefGoogle Scholar
  31. Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D’Agostin D, Kurahara C, Gao Y, Cao J, Gong J, Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Morony S, Sarosi I, Kostenuik PJ, Lacey DL, Simonet WS, Ke HZ, Paszty C (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23(6)  :  860–869PubMedCrossRefGoogle Scholar
  32. Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, Li Y, Feng G, Gao X, He L (2009) Sclerostin mediates bone response to mechanical unloading via antagonizing Wnt/beta-catenin signaling. J Bone Miner Res 24  :  1651–1661PubMedCrossRefGoogle Scholar
  33. Lindgren JU (1976) Studies of the calcium accretion rate of bone during immobilization in intact and thyroparathyroidectomized adult rats. Calcif Tissue Res 22(1)  :  41–47PubMedCrossRefGoogle Scholar
  34. Liu W, Toyosawa S, Furuichi T, Kanatani N, Yoshida C, Liu Y, Himeno M, Narai S, Yamaguchi A, Komori T (2001) Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J Cell Biol 155(1)  :  157–166PubMedCrossRefGoogle Scholar
  35. Lorenz-Depiereux B, Bastepe M, Benet-Pages A, Amyere M, Wagenstaller J, Muller-Barth U, Badenhoop K, Kaiser SM, Rittmaster RS, Shlossberg AH, Olivares JL, Loris C, Ramos FJ, Glorieux F, Vikkula M, Juppner H, Strom TM (2006) DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 38(11)  :  1248–1250PubMedCrossRefGoogle Scholar
  36. MacDonald BT, Joiner DM, Oyserman SM, Sharma P, Goldstein SA, He X, Hauschka PV (2007) Bone mass is inversely proportional to Dkk1 levels in mice. Bone 41(3)  :  331–339PubMedCrossRefGoogle Scholar
  37. Martignetti JA, Aqeel AA, Sewairi WA, Boumah CE, Kambouris M, Mayouf SA, Sheth KV, Eid WA, Dowling O, Harris J, Glucksman MJ, Bahabri S, Meyer BF, Desnick RJ (2001) Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nat Genet 28(3)  :  261–265PubMedCrossRefGoogle Scholar
  38. Morvan F, Boulukos K, Clement-Lacroix P, Roman Roman S, Suc-Royer I, Vayssiere B, Ammann P, Martin P, Pinho S, Pognonec P, Mollat P, Niehrs C, Baron R, Rawadi G (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 21(6)  :  934–945PubMedCrossRefGoogle Scholar
  39. Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR (1997) Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89(5)  :  773–779PubMedCrossRefGoogle Scholar
  40. Noble BS, Peet N, Stevens HY, Brabbs A, Mosley JR, Reilly GC, Reeve J, Skerry TM, Lanyon LE (2003) Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol 284(4)  :  C934–C943PubMedGoogle Scholar
  41. O’Brien CA, Jia D, Plotkin LI, Bellido T, Powers CC, Stewart SA, Manolagas SC, Weinstein RS (2004) Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145(4)  :  1835–1841PubMedCrossRefGoogle Scholar
  42. O’Brien CA, Plotkin LI, Galli C, Goellner JJ, Gortazar AR, Allen MR, Robling AG, Bouxsein M, Schipani E, Turner CH, Jilka RL, Weinstein RS, Manolagas SC, Bellido T (2008) Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS One 3(8)  :  e2942PubMedCrossRefGoogle Scholar
  43. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89(5)  :  765–771PubMedCrossRefGoogle Scholar
  44. Plotkin LI, Aguirre JI, Kousteni S, Manolagas SC, Bellido T (2005) Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation. J Biol Chem 280(8)  :  7317–7325PubMedCrossRefGoogle Scholar
  45. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283(9)  :  5866–5875PubMedCrossRefGoogle Scholar
  46. Saito M, Iwawaki T, Taya C, Yonekawa H, Noda M, Inui Y, Mekada E, Kimata Y, Tsuru A, Kohno K (2001) Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat Biotechnol 19(8)  :  746–750PubMedCrossRefGoogle Scholar
  47. Subramaniam M, Gorny G, Johnsen SA, Monroe DG, Evans GL, Fraser DG, Rickard DJ, Rasmussen K, van Deursen JM, Turner RT, Oursler MJ, Spelsberg TC (2005) TIEG1 null mouse-derived osteoblasts are defective in mineralization and in support of osteoclast differentiation in vitro. Mol Cell Biol 25(3)  :  1191–1199PubMedCrossRefGoogle Scholar
  48. Suzuki H, Amizuka N, Oda K, Li M, Yoshie H, Ohshima H, Noda M, Maeda T (2005) Histological evidence of the altered distribution of osteocytes and bone matrix synthesis in klotho-deficient mice. Arch Histol Cytol 68(5)  :  371–381PubMedCrossRefGoogle Scholar
  49. Taniguchi N, Yoshida K, Ito T, Tsuda M, Mishima Y, Furumatsu T, Ronfani L, Abeyama K, Kawahara K, Komiya S, Maruyama I, Lotz M, Bianchi ME, Asahara H (2007) Stage-specific secretion of HMGB1 in cartilage regulates endochondral ossification. Mol Cell Biol 27(16)  :  5650–5663PubMedCrossRefGoogle Scholar
  50. Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, Ito M, Takeshita S, Ikeda K (2007) Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab 5(6)  :  464–475PubMedCrossRefGoogle Scholar
  51. Tomkinson A, Reeve J, Shaw RW, Noble BS (1997) The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab 82(9)  :  3128–3135PubMedCrossRefGoogle Scholar
  52. Tomkinson A, Gevers EF, Wit JM, Reeve J, Noble BS (1998) The role of estrogen in the control of rat osteocyte apoptosis. J Bone Miner Res 13(8)  :  1243–1250PubMedCrossRefGoogle Scholar
  53. Tsukii K, Shima N, Mochizuki S, Yamaguchi K, Kinosaki M, Yano K, Shibata O, Udagawa N, Yasuda H, Suda T, Higashio K (1998) Osteoclast differentiation factor mediates an essential signal for bone resorption induced by 1 alpha, 25-dihydroxyvitamin D3, prostaglandin E2, or parathyroid hormone in the microenvironment of bone. Biochem Biophys Res Commun 246(2)  :  337–341PubMedCrossRefGoogle Scholar
  54. van Bezooijen RL, Roelen BA, Visser A, van der Wee-Pals L, de Wilt E, Karperien M, Hamersma H, Papapoulos SE, ten Dijke P, Lowik CW (2004) Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med 199(6)  :  805–814PubMedCrossRefGoogle Scholar
  55. van Hove RP, Nolte PA, Vatsa A, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J (2009) Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density–is there a role for mechanosensing? Bone 45  :  321–329PubMedCrossRefGoogle Scholar
  56. Vashishth D, Verborgt O, Divine G, Schaffler MB, Fyhrie DP (2000) Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone 26(4)  :  375–380PubMedCrossRefGoogle Scholar
  57. Verborgt O, Gibson GJ, Schaffler MB (2000) Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res 15(1)  :  60–67PubMedCrossRefGoogle Scholar
  58. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285(5425)  :  248–251PubMedCrossRefGoogle Scholar
  59. Watanuki M, Sakai A, Sakata T, Tsurukami H, Miwa M, Uchida Y, Watanabe K, Ikeda K, Nakamura T (2002) Role of inducible nitric oxide synthase in skeletal adaptation to acute increases in mechanical loading. J Bone Miner Res 17(6)  :  1015–1025PubMedCrossRefGoogle Scholar
  60. Weinstein RS, Nicholas RW, Manolagas SC (2000) Apoptosis of osteocytes in glucocorticoid-induced osteonecrosis of the hip. J Clin Endocrinol Metab 85(8)  :  2907–2912PubMedCrossRefGoogle Scholar
  61. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22(23)  :  6267–6276PubMedCrossRefGoogle Scholar
  62. Yang J, Shah R, Robling AG, Templeton E, Yang H, Tracey KJ, Bidwell JP (2008) HMGB1 is a bone-active cytokine. J Cell Physiol 214(3)  :  730–739PubMedCrossRefGoogle Scholar
  63. Yao W, Cheng Z, Pham A, Busse C, Zimmermann EA, Ritchie RO, Lane NE (2008) Glucocorticoid-induced bone loss in mice can be reversed by the actions of parathyroid hormone and risedronate on different pathways for bone formation and mineralization. Arthritis Rheum 58(11)  :  3485–3497PubMedCrossRefGoogle Scholar
  64. Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13(7)  :  791–801PubMedCrossRefGoogle Scholar
  65. Zaman G, Pitsillides AA, Rawlinson SC, Suswillo RF, Mosley JR, Cheng MZ, Platts LA, Hukkanen M, Polak JM, Lanyon LE (1999) Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J Bone Miner Res 14(7)  :  1123–1131PubMedCrossRefGoogle Scholar
  66. Zhao G, Monier-Faugere MC, Langub MC, Geng Z, Nakayama T, Pike JW, Chernausek SD, Rosen CJ, Donahue LR, Malluche HH, Fagin JA, Clemens TL (2000) Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology 141(7)  :  2674–2682PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Department of Bone and Joint DiseaseNational Center for Geriatrics and Gerontology (NCGG)ObuJapan

Personalised recommendations