Advertisement

Mechanobiology in Skeletal Muscle: Conversion of Mechanical Information into Molecular Signal

  • Yuko Miyagoe-Suzuki
  • Shin’ichi Takeda

Abstract

Overload leads to muscle hypertrophy. In the process, several events occur inside and outside the myofibers, including increased protein synthesis, change in gene expression, fiber-type transition, satellite cell activation, and angiogenesis (Bassel- Duby and Olson 2006; Blaauw et al. 2009). Interestingly, at the early phase of muscle hypertrophy, protein synthesis significantly increases (Baar et al. 2006), and later the transcription of growth-related genes follows (Carson 1997). Satellite cell activation is generally thought to be a critical component for increase in muscle mass; however, it is still a debated issue whether satellite cell incorporation into hypertrophying muscle fibers is required for muscle hypertrophy (O’Connor and Pavlath 2007; McCarthy and Esser 2007).

Keywords

Skeletal Muscle Focal Adhesion Kinase Satellite Cell Muscle Atrophy Leukemia Inhibitory Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The authors wish to thank members of the laboratory for discussion and critical readings.

References

  1. Acharyya S, Butchbach ME, Sahenk Z et al (2005) Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia. Cancer Cell 8  :  421–432PubMedCrossRefGoogle Scholar
  2. Adams GR (2002) Invited review: autocrine/paracrine IGF-I and skeletal muscle adaptation. J Appl Physiol 93  :  1159–1167PubMedGoogle Scholar
  3. Atherton PJ, Babraj J, Smith K et al (2005) Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J 19  :  786–788PubMedGoogle Scholar
  4. Baar K, Nader G, Bodine S (2006) Resistance exercise, muscle loading/unloading and the control of muscle mass. Essays Biochem 42  :  61–74PubMedCrossRefGoogle Scholar
  5. Barton ER (2006) Viral expression of insulin-like growth factor-I isoforms promotes different responses in skeletal muscle. J Appl Physiol 100  :  1778–1784PubMedCrossRefGoogle Scholar
  6. Bassel-Duby R, Olson EN (2006) Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75  :  19–37PubMedCrossRefGoogle Scholar
  7. Blaauw B, Canato M, Agatea L et al (2009) Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEB J 23  :  3896–3905PubMedCrossRefGoogle Scholar
  8. Bodine SC (2006) mTOR signaling and the molecular adaptation to resistance exercise. Med Sci Sports Exerc 38  :  1950–1957PubMedCrossRefGoogle Scholar
  9. Bodine SC, Stitt TN, Gonzalez M et al (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3  :  1014–1019PubMedCrossRefGoogle Scholar
  10. Brenman JE, Chao DS, Gee SH et al (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84  :  757–767PubMedCrossRefGoogle Scholar
  11. Butterfield TA, Best TM (2009) Stretch-activated ion channel blockade attenuates adaptations to eccentric exercise. Med Sci Sports Exerc 41  :  351–356PubMedGoogle Scholar
  12. Cai D, Frantz JD, Tawa NE Jr et al (2004) IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 119  :  285–298PubMedCrossRefGoogle Scholar
  13. Carson JA (1997) The regulation of gene expression in hypertrophying skeletal muscle. Exerc Sport Sci Rev 25  :  301–320PubMedCrossRefGoogle Scholar
  14. Carson JA, Wei L (2000) Integrin signaling’s potential for mediating gene expression in hypertrophying skeletal muscle. J Appl Physiol 88  :  337–343PubMedGoogle Scholar
  15. Chang WJ, Iannaccone ST, Lau KS et al (1996) Neuronal nitric oxide synthase and dystrophin-deficient muscular dystrophy. Proc Natl Acad Sci USA 93  :  9142–9147PubMedCrossRefGoogle Scholar
  16. Dodd SL, Gagnon BJ, Senf SM et al (2010) Ros-mediated activation of NF-kappaB and FoxO during muscle disuse. Muscle Nerve 41  :  110–113PubMedCrossRefGoogle Scholar
  17. Eliasson J, Elfegoun T, Nilsson J et al (2006) Maximal lengthening contractions increase p70 S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply. Am J Physiol Endocrinol Metab 291  :  E1197–E1205PubMedCrossRefGoogle Scholar
  18. Flück M, Carson JA, Gordon SE et al (1999) Focal adhesion proteins FAK and paxillin increase in hypertrophied skeletal muscle. Am J Physiol 277  :  C152–C162PubMedGoogle Scholar
  19. Franco A Jr, Lansman JB (1990a) Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature 344  :  670–673PubMedCrossRefGoogle Scholar
  20. Franco A Jr, Lansman JB (1990b) Stretch-sensitive channels in developing muscle cells from a mouse cell line. J Physiol 427  :  361–380PubMedGoogle Scholar
  21. Gautel M (2008) The sarcomere and the nucleus: functional links to hypertrophy, atrophy and sarcopenia. Adv Exp Med Biol 642  :  176–191PubMedCrossRefGoogle Scholar
  22. Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37  :  1974–1984PubMedCrossRefGoogle Scholar
  23. Goldspink G, Wessner B, Bachl N (2008) Growth factors, muscle function and doping. Curr Opin Pharmacol 8  :  352–357PubMedCrossRefGoogle Scholar
  24. Gordon SE, Flück M, Booth FW (2001) Selected contribution: skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent. J Appl Physiol 90  :  1174–1183PubMedGoogle Scholar
  25. Haddad F, Adams GR (2002) Selected contribution: acute cellular and molecular responses to resistance exercise. J Appl Physiol 93  :  394–403PubMedGoogle Scholar
  26. Hameed M, Orrell RW, Cobbold M et al (2003) Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise. J Physiol 547  :  247–254PubMedCrossRefGoogle Scholar
  27. Hess DT, Matsumoto A, Kim SO et al (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6  :  150–166PubMedCrossRefGoogle Scholar
  28. Hornberger TA, McLoughlin TJ, Leszczynski JK et al (2003) Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth. J Nutr 133  :  3091–3097PubMedGoogle Scholar
  29. Hornberger TA, Stuppard R, Conley KE et al (2004) Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J 380  :  795–804PubMedCrossRefGoogle Scholar
  30. Hornberger TA, Chu WK, Mak YW et al (2006) The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc Natl Acad Sci USA 103  :  4741–4746PubMedCrossRefGoogle Scholar
  31. Hunter RB, Kandarian SC (2004) Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. J Clin Invest 114  :  1504–1511PubMedGoogle Scholar
  32. Hunter RB, Stevenson E, Koncarevic A et al (2002) Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy. FASEB J 16  :  529–538PubMedCrossRefGoogle Scholar
  33. Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 287  :  C834–C843PubMedCrossRefGoogle Scholar
  34. Joulia-Ekaza D, Cabello G (2007) The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol 7  :  310–315PubMedCrossRefGoogle Scholar
  35. Judge AR, Koncarevic A, Hunter RB, Liou HC, Jackman RW, Kandarian SC (2007) Role for IkappaBalpha, but not c-Rel, in skeletal muscle atrophy. Am J Physiol Cell Physiol 292  :  C372–C382PubMedCrossRefGoogle Scholar
  36. Kadi F (2008) Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement. Br J Pharmacol 154  :  522–528PubMedCrossRefGoogle Scholar
  37. Koh TJ, Tidball JG (1999) Nitric oxide synthase inhibitors reduce sarcomere addition in rat skeletal muscle. J Physiol 519  :  189–196PubMedCrossRefGoogle Scholar
  38. Mammucari C, Milan G, Romanello V et al (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6  :  458–471PubMedCrossRefGoogle Scholar
  39. McCarthy JJ, Esser KA (2007) Counterpoint: satellite cell addition is not obligatory for skeletal muscle hypertrophy. J Appl Physiol 103  :  1100–1102PubMedCrossRefGoogle Scholar
  40. Mourkioti F, Kratsios P, Luedde T et al (2006) Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration. J Clin Invest 116  :  2945–2954PubMedCrossRefGoogle Scholar
  41. Musarò A, McCullagh K, Paul A et al (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27  :  195–200PubMedCrossRefGoogle Scholar
  42. Nader GA, Esser KA (2001) Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. J Appl Physiol 90  :  1936–1942PubMedGoogle Scholar
  43. O’Connor RS, Pavlath GK (2007) Point: counterpoint: satellite cell addition is/is not obligatory for skeletal muscle hypertrophy. J Appl Physiol 103  :  1099–1100PubMedCrossRefGoogle Scholar
  44. Ohanna M, Sobering AK, Lapointe T et al (2005) Atrophy of S6K1(−/−) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat Cell Biol 7  :  286–294PubMedCrossRefGoogle Scholar
  45. Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and disuse muscle atrophy. J Appl Physiol 102  :  2389–2397PubMedCrossRefGoogle Scholar
  46. Reiser PJ, Kline WO, Vaghy PL (1997) Induction of neuronal type nitric oxide synthase in skeletal muscle by chronic electrical stimulation in vivo. J Appl Physiol 82  :  1250–1255PubMedGoogle Scholar
  47. Rennie MJ, Wackerhage H, Spangenburg EE, Booth FW (2004) Control of the size of the human muscle mass. Annu Rev Physiol 66  :  799–828PubMedCrossRefGoogle Scholar
  48. Roberts CK, Barnard RJ, Jasman A, Balon TW (1999) Acute exercise increases nitric oxide synthase activity in skeletal muscle. Am J Physiol 277  :  E390–E394PubMedGoogle Scholar
  49. Rommel C, Bodine SC, Clarke BA, Rossman R et al (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3  :  1009–1013PubMedCrossRefGoogle Scholar
  50. Sandri M, Sandri C, Gilbert A et al (2004) FoxO transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117  :  399–412PubMedCrossRefGoogle Scholar
  51. Sellman JE, DeRuisseau KC, Betters JL et al (2006) In vivo inhibition of nitric oxide synthase impairs upregulation of contractile protein mRNA in overloaded plantaris muscle. J Appl Physiol 100  :  258–265PubMedCrossRefGoogle Scholar
  52. Smith LW, Smith JD, Criswell DS (2002) Involvement of nitric oxide synthase in skeletal muscle adaptation to chronic overload. J Appl Physiol 92  :  2005–2011PubMedGoogle Scholar
  53. Soltow QA, Betters JL, Sellman JE et al (2006) Ibuprofen inhibits skeletal muscle hypertrophy in rats. Med Sci Sports Exerc 38  :  840–846PubMedCrossRefGoogle Scholar
  54. Spangenburg EE (2009) Changes in muscle mass with mechanical load: possible cellular mechanisms. Nutr Metab 34  :  328–335Google Scholar
  55. Spangenburg EE, Booth FW (2006) Leukemia inhibitory factor restores the hypertrophic response to increased loading in the LIF(−/−) mouse. Cytokine 34  :  125–130PubMedCrossRefGoogle Scholar
  56. Spangenburg EE, McBride TA (2006) Inhibition of stretch-activated channels during eccentric muscle contraction attenuates p70S6K activation. Appl Physiol 100  :  129–135CrossRefGoogle Scholar
  57. Spangenburg EE, Le Roith D, Ward CW, Bodine SC (2008) A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy. J Physiol 586  :  283–291PubMedCrossRefGoogle Scholar
  58. Steensberg A, Keller C, Hillig T et al (2007) Nitric oxide production is a proximal signaling event controlling exercise-induced mRNA expression in human skeletal muscle. FASEB J 21  :  2683–2694PubMedCrossRefGoogle Scholar
  59. Stitt TN, Drujan D, Clarke BA et al (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14  :  395–403PubMedCrossRefGoogle Scholar
  60. Suzuki N, Motohashi N, Uezumi A et al (2007) NO production results in suspension-induced muscle atrophy through dislocation of neuronal NOS. J Clin Invest 117  :  2468–2476PubMedCrossRefGoogle Scholar
  61. Tatsumi R, Hattori A, Ikeuchi Y et al (2002) Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol Biol Cell 13  :  2909–2918PubMedCrossRefGoogle Scholar
  62. Tatsumi R, Liu X, Pulido A et al (2006) Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor. Am J Physiol Cell Physiol 290  :  C1487–C1494PubMedCrossRefGoogle Scholar
  63. Tidball JG, Lavergne E, Lau KS et al (1998) Mechanical loading regulates NOS expression and activity in developing and adult skeletal muscle. Am J Physiol 275  :  C260–C266PubMedGoogle Scholar
  64. Tidball JG, Spencer MJ, Wehling M, Lavergne E (1999) Nitric-oxide synthase is a mechanical signal transducer that modulates talin and vinculin expression. J Biol Chem 274  :  33155–33160PubMedCrossRefGoogle Scholar
  65. Ventadour S, Attaix D (2006) Mechanisms of skeletal muscle atrophy. Curr Opin Rheumatol 18  :  631–635PubMedCrossRefGoogle Scholar
  66. Widrick JJ, Stelzer JE, Shoepe TC, Garner DP (2002) Functional properties of human muscle fibers after short-term resistance exercise training. Am J Physiol Regul Integr Comp Physiol 283  :  R408–R416PubMedGoogle Scholar
  67. Xia H, Nho RS, Kahm J, Kleidon J, Henke CA (2004) Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta 1 integrin viability signaling pathway. J Biol Chem 279  :  33024–33034PubMedCrossRefGoogle Scholar
  68. Zanchi NE, Lancha AH Jr (2008) Mechanical stimuli of skeletal muscle: implications on mTOR/p70s6k and protein synthesis. Eur J Appl Physiol 102  :  253–263PubMedCrossRefGoogle Scholar
  69. Zhao J, Brault JJ, Schild A et al (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6  :  472–483PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
  2. 2.Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan

Personalised recommendations