Skip to main content

Mechanobiology in Skeletal Muscle: Conversion of Mechanical Information into Molecular Signal

  • Chapter
Mechanosensing Biology

Abstract

Overload leads to muscle hypertrophy. In the process, several events occur inside and outside the myofibers, including increased protein synthesis, change in gene expression, fiber-type transition, satellite cell activation, and angiogenesis (Bassel- Duby and Olson 2006; Blaauw et al. 2009). Interestingly, at the early phase of muscle hypertrophy, protein synthesis significantly increases (Baar et al. 2006), and later the transcription of growth-related genes follows (Carson 1997). Satellite cell activation is generally thought to be a critical component for increase in muscle mass; however, it is still a debated issue whether satellite cell incorporation into hypertrophying muscle fibers is required for muscle hypertrophy (O’Connor and Pavlath 2007; McCarthy and Esser 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharyya S, Butchbach ME, Sahenk Z et al (2005) Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia. Cancer Cell 8  :  421–432

    Article  PubMed  CAS  Google Scholar 

  • Adams GR (2002) Invited review: autocrine/paracrine IGF-I and skeletal muscle adaptation. J Appl Physiol 93  :  1159–1167

    PubMed  CAS  Google Scholar 

  • Atherton PJ, Babraj J, Smith K et al (2005) Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J 19  :  786–788

    PubMed  CAS  Google Scholar 

  • Baar K, Nader G, Bodine S (2006) Resistance exercise, muscle loading/unloading and the control of muscle mass. Essays Biochem 42  :  61–74

    Article  PubMed  CAS  Google Scholar 

  • Barton ER (2006) Viral expression of insulin-like growth factor-I isoforms promotes different responses in skeletal muscle. J Appl Physiol 100  :  1778–1784

    Article  PubMed  CAS  Google Scholar 

  • Bassel-Duby R, Olson EN (2006) Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75  :  19–37

    Article  PubMed  CAS  Google Scholar 

  • Blaauw B, Canato M, Agatea L et al (2009) Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEB J 23  :  3896–3905

    Article  PubMed  CAS  Google Scholar 

  • Bodine SC (2006) mTOR signaling and the molecular adaptation to resistance exercise. Med Sci Sports Exerc 38  :  1950–1957

    Article  PubMed  CAS  Google Scholar 

  • Bodine SC, Stitt TN, Gonzalez M et al (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3  :  1014–1019

    Article  PubMed  CAS  Google Scholar 

  • Brenman JE, Chao DS, Gee SH et al (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84  :  757–767

    Article  PubMed  CAS  Google Scholar 

  • Butterfield TA, Best TM (2009) Stretch-activated ion channel blockade attenuates adaptations to eccentric exercise. Med Sci Sports Exerc 41  :  351–356

    PubMed  CAS  Google Scholar 

  • Cai D, Frantz JD, Tawa NE Jr et al (2004) IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 119  :  285–298

    Article  PubMed  CAS  Google Scholar 

  • Carson JA (1997) The regulation of gene expression in hypertrophying skeletal muscle. Exerc Sport Sci Rev 25  :  301–320

    Article  PubMed  CAS  Google Scholar 

  • Carson JA, Wei L (2000) Integrin signaling’s potential for mediating gene expression in hypertrophying skeletal muscle. J Appl Physiol 88  :  337–343

    PubMed  CAS  Google Scholar 

  • Chang WJ, Iannaccone ST, Lau KS et al (1996) Neuronal nitric oxide synthase and dystrophin-deficient muscular dystrophy. Proc Natl Acad Sci USA 93  :  9142–9147

    Article  PubMed  CAS  Google Scholar 

  • Dodd SL, Gagnon BJ, Senf SM et al (2010) Ros-mediated activation of NF-kappaB and FoxO during muscle disuse. Muscle Nerve 41  :  110–113

    Article  PubMed  CAS  Google Scholar 

  • Eliasson J, Elfegoun T, Nilsson J et al (2006) Maximal lengthening contractions increase p70 S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply. Am J Physiol Endocrinol Metab 291  :  E1197–E1205

    Article  PubMed  CAS  Google Scholar 

  • Flück M, Carson JA, Gordon SE et al (1999) Focal adhesion proteins FAK and paxillin increase in hypertrophied skeletal muscle. Am J Physiol 277  :  C152–C162

    PubMed  Google Scholar 

  • Franco A Jr, Lansman JB (1990a) Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature 344  :  670–673

    Article  PubMed  CAS  Google Scholar 

  • Franco A Jr, Lansman JB (1990b) Stretch-sensitive channels in developing muscle cells from a mouse cell line. J Physiol 427  :  361–380

    PubMed  Google Scholar 

  • Gautel M (2008) The sarcomere and the nucleus: functional links to hypertrophy, atrophy and sarcopenia. Adv Exp Med Biol 642  :  176–191

    Article  PubMed  CAS  Google Scholar 

  • Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37  :  1974–1984

    Article  PubMed  CAS  Google Scholar 

  • Goldspink G, Wessner B, Bachl N (2008) Growth factors, muscle function and doping. Curr Opin Pharmacol 8  :  352–357

    Article  PubMed  CAS  Google Scholar 

  • Gordon SE, Flück M, Booth FW (2001) Selected contribution: skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent. J Appl Physiol 90  :  1174–1183

    PubMed  CAS  Google Scholar 

  • Haddad F, Adams GR (2002) Selected contribution: acute cellular and molecular responses to resistance exercise. J Appl Physiol 93  :  394–403

    PubMed  CAS  Google Scholar 

  • Hameed M, Orrell RW, Cobbold M et al (2003) Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise. J Physiol 547  :  247–254

    Article  PubMed  CAS  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO et al (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6  :  150–166

    Article  PubMed  CAS  Google Scholar 

  • Hornberger TA, McLoughlin TJ, Leszczynski JK et al (2003) Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth. J Nutr 133  :  3091–3097

    PubMed  CAS  Google Scholar 

  • Hornberger TA, Stuppard R, Conley KE et al (2004) Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J 380  :  795–804

    Article  PubMed  CAS  Google Scholar 

  • Hornberger TA, Chu WK, Mak YW et al (2006) The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc Natl Acad Sci USA 103  :  4741–4746

    Article  PubMed  CAS  Google Scholar 

  • Hunter RB, Kandarian SC (2004) Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. J Clin Invest 114  :  1504–1511

    PubMed  CAS  Google Scholar 

  • Hunter RB, Stevenson E, Koncarevic A et al (2002) Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy. FASEB J 16  :  529–538

    Article  PubMed  CAS  Google Scholar 

  • Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 287  :  C834–C843

    Article  PubMed  CAS  Google Scholar 

  • Joulia-Ekaza D, Cabello G (2007) The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol 7  :  310–315

    Article  PubMed  CAS  Google Scholar 

  • Judge AR, Koncarevic A, Hunter RB, Liou HC, Jackman RW, Kandarian SC (2007) Role for IkappaBalpha, but not c-Rel, in skeletal muscle atrophy. Am J Physiol Cell Physiol 292  :  C372–C382

    Article  PubMed  CAS  Google Scholar 

  • Kadi F (2008) Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement. Br J Pharmacol 154  :  522–528

    Article  PubMed  CAS  Google Scholar 

  • Koh TJ, Tidball JG (1999) Nitric oxide synthase inhibitors reduce sarcomere addition in rat skeletal muscle. J Physiol 519  :  189–196

    Article  PubMed  CAS  Google Scholar 

  • Mammucari C, Milan G, Romanello V et al (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6  :  458–471

    Article  PubMed  CAS  Google Scholar 

  • McCarthy JJ, Esser KA (2007) Counterpoint: satellite cell addition is not obligatory for skeletal muscle hypertrophy. J Appl Physiol 103  :  1100–1102

    Article  PubMed  Google Scholar 

  • Mourkioti F, Kratsios P, Luedde T et al (2006) Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration. J Clin Invest 116  :  2945–2954

    Article  PubMed  CAS  Google Scholar 

  • Musarò A, McCullagh K, Paul A et al (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27  :  195–200

    Article  PubMed  Google Scholar 

  • Nader GA, Esser KA (2001) Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. J Appl Physiol 90  :  1936–1942

    PubMed  CAS  Google Scholar 

  • O’Connor RS, Pavlath GK (2007) Point: counterpoint: satellite cell addition is/is not obligatory for skeletal muscle hypertrophy. J Appl Physiol 103  :  1099–1100

    Article  PubMed  Google Scholar 

  • Ohanna M, Sobering AK, Lapointe T et al (2005) Atrophy of S6K1(−/−) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat Cell Biol 7  :  286–294

    Article  PubMed  CAS  Google Scholar 

  • Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and disuse muscle atrophy. J Appl Physiol 102  :  2389–2397

    Article  PubMed  CAS  Google Scholar 

  • Reiser PJ, Kline WO, Vaghy PL (1997) Induction of neuronal type nitric oxide synthase in skeletal muscle by chronic electrical stimulation in vivo. J Appl Physiol 82  :  1250–1255

    PubMed  CAS  Google Scholar 

  • Rennie MJ, Wackerhage H, Spangenburg EE, Booth FW (2004) Control of the size of the human muscle mass. Annu Rev Physiol 66  :  799–828

    Article  PubMed  CAS  Google Scholar 

  • Roberts CK, Barnard RJ, Jasman A, Balon TW (1999) Acute exercise increases nitric oxide synthase activity in skeletal muscle. Am J Physiol 277  :  E390–E394

    PubMed  CAS  Google Scholar 

  • Rommel C, Bodine SC, Clarke BA, Rossman R et al (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3  :  1009–1013

    Article  PubMed  CAS  Google Scholar 

  • Sandri M, Sandri C, Gilbert A et al (2004) FoxO transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117  :  399–412

    Article  PubMed  CAS  Google Scholar 

  • Sellman JE, DeRuisseau KC, Betters JL et al (2006) In vivo inhibition of nitric oxide synthase impairs upregulation of contractile protein mRNA in overloaded plantaris muscle. J Appl Physiol 100  :  258–265

    Article  PubMed  CAS  Google Scholar 

  • Smith LW, Smith JD, Criswell DS (2002) Involvement of nitric oxide synthase in skeletal muscle adaptation to chronic overload. J Appl Physiol 92  :  2005–2011

    PubMed  CAS  Google Scholar 

  • Soltow QA, Betters JL, Sellman JE et al (2006) Ibuprofen inhibits skeletal muscle hypertrophy in rats. Med Sci Sports Exerc 38  :  840–846

    Article  PubMed  CAS  Google Scholar 

  • Spangenburg EE (2009) Changes in muscle mass with mechanical load: possible cellular mechanisms. Nutr Metab 34  :  328–335

    CAS  Google Scholar 

  • Spangenburg EE, Booth FW (2006) Leukemia inhibitory factor restores the hypertrophic response to increased loading in the LIF(−/−) mouse. Cytokine 34  :  125–130

    Article  PubMed  CAS  Google Scholar 

  • Spangenburg EE, McBride TA (2006) Inhibition of stretch-activated channels during eccentric muscle contraction attenuates p70S6K activation. Appl Physiol 100  :  129–135

    Article  CAS  Google Scholar 

  • Spangenburg EE, Le Roith D, Ward CW, Bodine SC (2008) A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy. J Physiol 586  :  283–291

    Article  PubMed  CAS  Google Scholar 

  • Steensberg A, Keller C, Hillig T et al (2007) Nitric oxide production is a proximal signaling event controlling exercise-induced mRNA expression in human skeletal muscle. FASEB J 21  :  2683–2694

    Article  PubMed  CAS  Google Scholar 

  • Stitt TN, Drujan D, Clarke BA et al (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14  :  395–403

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Motohashi N, Uezumi A et al (2007) NO production results in suspension-induced muscle atrophy through dislocation of neuronal NOS. J Clin Invest 117  :  2468–2476

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi R, Hattori A, Ikeuchi Y et al (2002) Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol Biol Cell 13  :  2909–2918

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi R, Liu X, Pulido A et al (2006) Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor. Am J Physiol Cell Physiol 290  :  C1487–C1494

    Article  PubMed  CAS  Google Scholar 

  • Tidball JG, Lavergne E, Lau KS et al (1998) Mechanical loading regulates NOS expression and activity in developing and adult skeletal muscle. Am J Physiol 275  :  C260–C266

    PubMed  CAS  Google Scholar 

  • Tidball JG, Spencer MJ, Wehling M, Lavergne E (1999) Nitric-oxide synthase is a mechanical signal transducer that modulates talin and vinculin expression. J Biol Chem 274  :  33155–33160

    Article  PubMed  CAS  Google Scholar 

  • Ventadour S, Attaix D (2006) Mechanisms of skeletal muscle atrophy. Curr Opin Rheumatol 18  :  631–635

    Article  PubMed  CAS  Google Scholar 

  • Widrick JJ, Stelzer JE, Shoepe TC, Garner DP (2002) Functional properties of human muscle fibers after short-term resistance exercise training. Am J Physiol Regul Integr Comp Physiol 283  :  R408–R416

    PubMed  CAS  Google Scholar 

  • Xia H, Nho RS, Kahm J, Kleidon J, Henke CA (2004) Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta 1 integrin viability signaling pathway. J Biol Chem 279  :  33024–33034

    Article  PubMed  CAS  Google Scholar 

  • Zanchi NE, Lancha AH Jr (2008) Mechanical stimuli of skeletal muscle: implications on mTOR/p70s6k and protein synthesis. Eur J Appl Physiol 102  :  253–263

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Brault JJ, Schild A et al (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6  :  472–483

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank members of the laboratory for discussion and critical readings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin’ichi Takeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Miyagoe-Suzuki, Y., Takeda, S. (2011). Mechanobiology in Skeletal Muscle: Conversion of Mechanical Information into Molecular Signal. In: Noda, M. (eds) Mechanosensing Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-89757-6_4

Download citation

Publish with us

Policies and ethics