Mechanobiology During Vertebrate Organ Development

  • Makoto Asashima
  • Yoshiro Nakajima
  • Yuzuru Ito
  • Tatsuo Michiue
  • Kiyoshi Ohnuma


Neural crest cells are one of many migrating cell types found in vertebrate tissues. Neural crest specification occurs between the neural plate and epidermal region during vertebrate embryogenesis, and is regulated at the gene level by appropriate concentrations of cell signaling proteins such as bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and Wnt (reviewed by Meulemans and Bronner-Fraser 2004). Many genes participate in this regional network to specify the neural crest. After neural tube closure, neural crest cells start migrating to the ventral half of the embryo, and the resultant epithelial-to-mesenchymal transformation dissociates the neural crest cells from the epidermis. The dissociated neural crest cells then start to move ventrally.


Neural Crest Neural Crest Cell Directional Migration Neural Tube Closure Dome Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bracken CM, Mizeracka K, McLaughlin KA (2008) Patterning the embryonic kidney: BMP signaling mediates the differentiation of the pronephric tubules and duct in Xenopus laevis. Dev Dyn 237    :    132–144PubMedCrossRefGoogle Scholar
  2. Brock A, Chang E, Ho CC, Leduc P, Jiang X, Whitesides GM, Ingber DE (2003) Geometric determinants of directional cell motility revealed using microcontact printing. Langmuir 19  :  1611–1617PubMedCrossRefGoogle Scholar
  3. Bronner-Fraser M (1986) An antibody to a receptor for fibronectin and laminin perturbs cranial neural crest development in vivo. Dev Biol 117  :  528–536PubMedCrossRefGoogle Scholar
  4. Bukanov NO, Husson H, Dackowski WR, Lawrence BD, Clow PA, Roberts BL, Klinger KW, Ibraghimov-Beskrovnaya O (2002) Functional polycystin-1 expression is developmentally regulated during epithelial morphogenesis in vitro: downregulation and loss of membrane localization during cystogenesis. Hum Mol Genet 11  :  923–936CrossRefGoogle Scholar
  5. Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn GA, Parsons M, Stern CD, Mayor R (2008) Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456  :  957–961PubMedCrossRefGoogle Scholar
  6. Cereijido M, Robbins ES, Dolan WJ, Rotunno CA, Sabatini DD (1978) Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol 77  :  853–880PubMedCrossRefGoogle Scholar
  7. Chan TC, Takahashi S, Asashima M (2000) A role for Xlim-1 in pronephros development in Xenopus laevis. Dev Biol 228  :  256–269PubMedCrossRefGoogle Scholar
  8. Duband JL, Rocher S, Chen WT, Yamada KM, Thiery JP (1986) Cell adhesion and migration in the early vertebrate embryo: location and possible role of the putative fibronectin receptor complex. J Cell Biol 102  :  160–178PubMedCrossRefGoogle Scholar
  9. Giamarchi A, Padilla F, Coste B, Raoux M, Crest M, Honoré E, Delmas P (2006) The versatile nature of the calcium-permeable cation channel TRPP2. EMBO Rep 7  :  787–793PubMedCrossRefGoogle Scholar
  10. Goodman SL, Newgreen D (1985) Do cells show an inverse locomotory response to fibronectin and laminin substrates? EMBO J 4  :  2769–2771PubMedGoogle Scholar
  11. Greene LA, Burstein DE, Black MM (1982) The role of transcription-dependent priming in nerve growth factor promoted neurite outgrowth. Dev Biol 91  :  305–316PubMedCrossRefGoogle Scholar
  12. Hanwell D, Ishikawa T, Saleki R, Rotin D (2002) Trafficking and cell surface stability of the epithelial Na+ channel expressed in epithelial Madin-Darby Canine Kidney cells. J Biol Chem 277  :  9772–9779PubMedCrossRefGoogle Scholar
  13. Hatten ME (2002) New directions in neuronal migration. Science 297  :  1660–1663PubMedCrossRefGoogle Scholar
  14. He Z, Tessier-Lavigne M (1997) Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90  :  739–751PubMedCrossRefGoogle Scholar
  15. Ichigi J, Asashima M (2001) Dome formation and tubule morphogenesis by Xenopus kidney A6 cell cultures exposed to microgravity. In Vitro Cell Dev Biol Anim 37  :  31–44PubMedCrossRefGoogle Scholar
  16. Ikuzawa M, Akiduki S, Asashima M (2007) Gene expression profile of Xenopus A6 cells cultured under random positioning machine shows downregulation of ion transporter genes and inhibition of dome formation. Adv Space Res 40  :  1694–1702CrossRefGoogle Scholar
  17. Ingber DE (2003) Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 116  :  1157–1173PubMedCrossRefGoogle Scholar
  18. Jiang X, Bruzewicz DA, Wong AP, Piel M, Whitesides GM (2005) Directing cell migration with asymmetric micropatterns. Proc Natl Acad Sci USA 102  :  975–978PubMedCrossRefGoogle Scholar
  19. Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM (1999) Patterning proteins and cells using soft lithography. Biomaterials 20  :  2363–2376PubMedCrossRefGoogle Scholar
  20. Kitamoto J, Fukui A, Asashima M (2005) Temporal regulation of global gene expression and cellular morphology in Xenopus kidney cells in response to clinorotation. Adv Space Res 35  :  1654–1661PubMedCrossRefGoogle Scholar
  21. Kolodkin AL, Levengood DV, Rowe EG, Tai YT, Giger RJ, Ginty DD (1997) Neuropilin is a semaphorin III receptor. Cell 90  :  753–762PubMedCrossRefGoogle Scholar
  22. Krull CE, Lansford R, Gale NW, Collazo A, Marcelle C, Yancopoulos GD, Fraser SE, Bronner-Fraser M (1997) Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr Biol 7  :  571–580PubMedCrossRefGoogle Scholar
  23. Kyuno J, Fukui A, Michiue T, Asashima M (2003) Characterization of a gene respondent to clinorotation in Xenopus A6 cells. Biol Sci Space 17  :  171–172PubMedGoogle Scholar
  24. Mahmud G, Campbell CJ, Bishop KJM, Komarova YA, Chaga O, Soh S, Huda S, Kandere-grzybowska K, Grzybowski BA (2009) Directing cell motions on micropatterned ratchets. Nat Phys 5  :  606–612CrossRefGoogle Scholar
  25. Meulemans D, Bronner-Fraser M (2004) Gene-regulatory interactions in neural crest evolution and development. Dev Cell 7  :  291–299PubMedCrossRefGoogle Scholar
  26. Misfeldt DS, Hamamoto ST, Pitelka DR (1976) Transepithelial transport in cell culture. Proc Natl Acad Sci USA 73  :  1212–1216PubMedCrossRefGoogle Scholar
  27. Moberly JB, Fanestil DD (1988) A monoclonal antibody that recognizes a basolateral membrane protein in A6 epithelial cells. J Cell Physiol 135  :  63–70PubMedCrossRefGoogle Scholar
  28. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33  :  129–137PubMedCrossRefGoogle Scholar
  29. Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 11  :  1161–1171CrossRefGoogle Scholar
  30. Ohnuma K, Hayashi Y, Furue M, Kaneko K, Asashima M (2006) Serum-free culture conditions for serial subculture of undifferentiated PC12 cells. J Neurosci Methods 151  :  250–261PubMedCrossRefGoogle Scholar
  31. Orlowski J, Grinstein S (2004) Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch 447  :  549–565PubMedCrossRefGoogle Scholar
  32. Perkins F, Handler J (1981) Transport properties of toad kidney epithelia in culture. Am J Physiol Cell Physiol 241  :  C154–C159Google Scholar
  33. Rabito CA, Tchao R, Valentich J, Leighton J (1980) Effect of cell-substratum interaction on hemicyst formation by MDCK cells. In Vitro 16  :  461–468PubMedCrossRefGoogle Scholar
  34. Rafferty KA Jr (1969) Mass culture of amphibian cells: methods and observations concerning stability of cell type. In: Mizell M (ed) Biology of amphibian tumors. Springer, New York, pp 52–81CrossRefGoogle Scholar
  35. Recknor JB, Sakaguchi DS, Mallapragada SK (2006) Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates. Biomaterials 27  :  4098–4108PubMedCrossRefGoogle Scholar
  36. Satow R, Chan TC, Asashima M (2004) The role of Xenopus frizzled-8 in pronephric development. Biochem Biophys Res Commun 321  :  487–494PubMedCrossRefGoogle Scholar
  37. Saulnier DM, Ghanbari H, Brandli AW (2002) Essential function of Wnt-4 for tubulogenesis in the Xenopus pronephric kidney. Dev Biol 248  :  13–28PubMedCrossRefGoogle Scholar
  38. Saxén L, Sariola H (1987) Early organogenesis of the kidney. Pediatr Nephrol 1  :  385–392PubMedCrossRefGoogle Scholar
  39. Sharif-Naeini R, Folgering JHA, Bichet D, Fabrice Duprat F, Lauritzen I, Arhatte M, Jodar M, Dedman A, Chatelain FC, Uwe Schulte U, Retailleau K, Loufrani L, Patel A, Sachs F, Delmas P, Peters DJM, Honoré E (2009) Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139  :  587–596PubMedCrossRefGoogle Scholar
  40. Shlyonsky V, Goolaerts A, Van Beneden R, Sariban-Sohraby S (2005) Differentiation of epithelial Na+ channel function an in vitro model. J Biol Chem 280  :  24181–24187PubMedCrossRefGoogle Scholar
  41. Taira M, Otani H, Saint-Jeannet JP, Dawid IB (1994) Role of the LIM class homeodomain protein Xlim-1 in neural and muscle induction by the Spemann organizer in Xenopus. Nature 372  :  677–679PubMedCrossRefGoogle Scholar
  42. Urban AE, Zhou X, Ungos JM, Raible DW, Altmann CR, Vize PD (2006) FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development. Dev Biol 297  :  103–117PubMedCrossRefGoogle Scholar
  43. Valentich JD, Tchao R, Leighton J (1979) Hemicyst formation stimulated by cyclic AMP in dog kidney cell line MDCK. J Cell Physiol 100  :  291–304PubMedCrossRefGoogle Scholar
  44. Wallingford JB, Carroll TJ, Vize PD (1998) Precocious expression of the Wilms’ tumor gene xWT1 inhibits embryonic kidney development in Xenopus laevis. Dev Biol 202  :  103–112PubMedCrossRefGoogle Scholar
  45. Warth R (2003) Potassium channels in epithelial transport. Pflugers Arch 446  :  505–513PubMedCrossRefGoogle Scholar
  46. Wilson PD (2004) Polycystic kidney disease. N Engl J Med 350  :  151–164PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Makoto Asashima
    • 1
  • Yoshiro Nakajima
    • 1
  • Yuzuru Ito
    • 1
  • Tatsuo Michiue
    • 2
  • Kiyoshi Ohnuma
    • 3
  1. 1.Research Center for Stem Cell EngineeringNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.Department of Life Sciences (Biology) Graduate School of Arts and SciencesThe University of TokyoMeguro-kuJapan
  3. 3.Top Runner Incubation Center for Academia-Industry FusionNagaoka University of TechnologyNagaokaJapan

Personalised recommendations