Advertisement

Molecular Mechanisms Underlying Mechanosensing in Vascular Biology

  • Kimiko Yamamoto
  • Joji Ando

Abstract

Vascular endothelial cells (ECs) are constantly exposed to shear stress, the frictional force exerted by flowing blood. ECs recognize changes in shear stress and transmit signals to the interior of the cell, leading to cell responses that involve changes in cell morphology, cell function, and gene expression. These EC responses to shear stress are thought to play important roles in blood-flow-dependent phenomena, such as vascular tone control, angiogenesis, vascular remodeling, and atherogenesis. Thus far, much research has been done on shear stress sensing and signal transduction, and its molecular mechanisms are gradually becoming understood. Shear stress activates multiple signal transduction pathways, and various membrane molecules and cellular microdomains, including ion channels, growth factor receptors, G proteins, caveolae, adhesion proteins, the cytoskeleton, the glycocalyx, and primary cilia, have all been proposed as potential shear stress sensors. Ca2+ signaling via an ATP-operated cation channel, P2X4, has been shown to play a crucial role in shear stress mechanotransduction. Shear stress evokes ATP release from ECs and the released ATP activates P2X4, thereby causing a dose-dependent influx of extracellular Ca2+ into the cell. P2X4 knockout mice do not show normal EC responses to shear stress, such as Ca2+ influx and subsequent production of a potent vasodilator nitric oxide, which leads to impaired control of blood pressure, blood-flow-mediated vasodilation and vascular remodeling. More extensive studies in vascular mechanosensing will lead to a better understanding of the molecular basis of blood-flow-mediated control of vascular function and homeostasis.

Keywords

Shear Stress Focal Adhesion Kinase Vascular Remodel Primary Cilium Cyclic Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partly supported by grants-in-aid for Scientific Research (A18200030, B19300155, and S21220011) and Scientific Research on Priority Areas from the Japanese Ministry of Education, Culture, Sports, Science and Technology (17076002). The authors acknowledge Dr. Akira Kamiya for valuable support and guidance for our work.

References

  1. Aboualaiwi WA, Takahashi M et al (2009) Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res 104  :  860–869PubMedCrossRefGoogle Scholar
  2. Anderson RG (1993) Caveolae: where incoming and outgoing messengers meet. Proc Natl Acad Sci USA 90  :  10909–10913PubMedCrossRefGoogle Scholar
  3. Ando J, Komatsuda T et al (1988) Cytoplasmic calcium response to fluid shear stress in cultured vascular endothelial cells. In Vitro Cell Dev Biol 24  :  871–877PubMedCrossRefGoogle Scholar
  4. Ando J, Ohtsuka A et al (1993) Wall shear stress rather than shear rate regulates cytoplasmic Ca++ responses to flow in vascular endothelial cells. Biochem Biophys Res Commun 190  :  716–723PubMedCrossRefGoogle Scholar
  5. Ando J, Korenaga R et al (1999) Flow-induced endothelial gene regulation. In: Lelkes PI (ed) Mechanical forces and the endothelium. Harwood Academic Publishers, Singapore, pp 111–126Google Scholar
  6. Barakat AI, Leaver EV et al (1999) A flow-activated chloride-selective membrane current in vascular endothelial cells. Circ Res 85  :  820–828PubMedCrossRefGoogle Scholar
  7. Bodin P, Burnstock G (2001) Evidence that release of adenosine triphosphate from endothelial cells during increased shear stress is vesicular. J Cardiovasc Pharmacol 38  :  900–908PubMedCrossRefGoogle Scholar
  8. Boyd NL, Park H et al (2003) Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells. Am J Physiol Heart Circ Physiol 285  :  H1113–H1122PubMedGoogle Scholar
  9. Buga GM, Gold ME et al (1991) Shear stress-induced release of nitric oxide from endothelial cells grown on beads. Hypertension 17  :  187–193PubMedCrossRefGoogle Scholar
  10. Burridge K, Chrzanowska-Wodnicka M (1996) Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 12  :  463–518PubMedCrossRefGoogle Scholar
  11. Butler PJ, Norwich G et al (2001) Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity. Am J Physiol Cell Physiol 280  :  C962–C969PubMedGoogle Scholar
  12. Butler PJ, Tsou TC et al (2002) Rate sensitivity of shear-induced changes in the lateral diffusion of endothelial cell membrane lipids: a role for membrane perturbation in shear-induced MAPK activation. FASEB J 16  :  216–218PubMedGoogle Scholar
  13. Bystrevskaya VB, Lichkun VV et al (1988) An ultrastructural study of centriolar complexes in adult and embryonic human aortic endothelial cells. Tissue Cell 20  :  493–503PubMedCrossRefGoogle Scholar
  14. Chachisvilis M, Zhang YL et al (2006) G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci USA 103  :  15463–15468PubMedCrossRefGoogle Scholar
  15. Chen KD, Li YS et al (1999) Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem 274  :  18393–18400PubMedCrossRefGoogle Scholar
  16. Chen J, Fabry B et al (2001) Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. Am J Physiol Cell Physiol 280  :  C1475–C1484PubMedGoogle Scholar
  17. Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292  :  H1209–H1224PubMedCrossRefGoogle Scholar
  18. Chun TH, Itoh H et al (1997) Shear stress augments expression of C-type natriuretic peptide and adrenomedullin. Hypertension 29  :  1296–1302PubMedCrossRefGoogle Scholar
  19. Czarny M, Schnitzer JE (2004) Neutral sphingomyelinase inhibitor scyphostatin prevents and ceramide mimics mechanotransduction in vascular endothelium. Am J Physiol Heart Circ Physiol 287  :  H1344–H1352PubMedCrossRefGoogle Scholar
  20. Dangaria JH, Butler PJ (2007) Macrorheology and adaptive microrheology of endothelial cells subjected to fluid shear stress. Am J Physiol Cell Physiol 293  :  C1568–C1575PubMedCrossRefGoogle Scholar
  21. Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75  :  519–560PubMedGoogle Scholar
  22. De Keulenaer GW, Chappell DC et al (1998) Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase. Circ Res 82  :  1094–1101PubMedCrossRefGoogle Scholar
  23. Dejana E, Bazzoni G et al (1999) Vascular endothelial (VE)-cadherin: only an intercellular glue? Exp Cell Res 252  :  13–19PubMedCrossRefGoogle Scholar
  24. Dewey CF Jr, Bussolari SR et al (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103  :  177–185PubMedCrossRefGoogle Scholar
  25. Diamond SL, Eskin SG et al (1989) Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science 243  :  1483–1485PubMedCrossRefGoogle Scholar
  26. Dobrin PB (1978) Mechanical properties of arteries. In: Caro CG, Pedley TJ, Schroter RC, Seed WA (eds) The mechanics of the circulation. Oxford University Press, New York, pp 397–460Google Scholar
  27. Florian JA, Kosky JR et al (2003) Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 93  :  e136–e142PubMedCrossRefGoogle Scholar
  28. Frangos JA, Eskin SG et al (1985) Flow effects on prostacyclin production by cultured human endothelial cells. Science 227  :  1477–1479PubMedCrossRefGoogle Scholar
  29. Fujiwara K (2006) Platelet endothelial cell adhesion molecule-1 and mechanotransduction in vascular endothelial cells. J Intern Med 259  :  373–380PubMedCrossRefGoogle Scholar
  30. Gautam M, Shen Y et al (2006) Flow-activated chloride channels in vascular endothelium. Shear stress sensitivity, desensitization dynamics, and physiological implications. J Biol Chem 281  :  36492–36500PubMedCrossRefGoogle Scholar
  31. Gojova A, Barakat AI (2005) Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels. J Appl Physiol 98  :  2355–2362PubMedCrossRefGoogle Scholar
  32. Green DJ, Maiorana A et al (2004) Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol 561  :  1–25PubMedCrossRefGoogle Scholar
  33. Gudi SR, Clark CB et al (1996) Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction. Circ Res 79  :  834–839PubMedCrossRefGoogle Scholar
  34. Gudi S, Nolan JP et al (1998) Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition. Proc Natl Acad Sci USA 95  :  2515–2519PubMedCrossRefGoogle Scholar
  35. Haidekker MA, L’Heureux N et al (2000) Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence. Am J Physiol Heart Circ Physiol 278  :  H1401–H1406PubMedGoogle Scholar
  36. Harada N, Masuda M et al (1995) Fluid flow and osmotic stress induce tyrosine phosphorylation of an endothelial cell 128 kDa surface glycoprotein. Biochem Biophys Res Commun 214  :  69–74PubMedCrossRefGoogle Scholar
  37. Hierck BP, Van der Heiden K et al (2008) Primary cilia sensitize endothelial cells for fluid shear stress. Dev Dyn 237  :  725–735PubMedCrossRefGoogle Scholar
  38. Hsieh HJ, Li NQ et al (1991) Shear stress increases endothelial platelet-derived growth factor mRNA levels. Am J Physiol 260  :  H642–H646PubMedGoogle Scholar
  39. Huddleson JP, Ahmad N et al (2006) Up-regulation of the KLF2 transcription factor by fluid shear stress requires nucleolin. J Biol Chem 281  :  15121–15128PubMedCrossRefGoogle Scholar
  40. Hwang J, Ing MH et al (2003) Pulsatile versus oscillatory shear stress regulates NADPH oxidase subunit expression: implication for native LDL oxidation. Circ Res 93  :  1225–1232PubMedCrossRefGoogle Scholar
  41. Imberti B, Morigi M et al (2000) Shear stress-induced cytoskeleton rearrangement mediates NF-kappaB-dependent endothelial expression of ICAM-1. Microvasc Res 60  :  182–188PubMedCrossRefGoogle Scholar
  42. Ingber D (1991) Integrins as mechanochemical transducers. Curr Opin Cell Biol 3  :  841–848PubMedCrossRefGoogle Scholar
  43. Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59  :  575–599PubMedCrossRefGoogle Scholar
  44. Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20  :  811–827PubMedCrossRefGoogle Scholar
  45. Inoue H, Taba Y et al (2002) Transcriptional and posttranscriptional regulation of cyclooxygenase-2 expression by fluid shear stress in vascular endothelial cells. Arterioscler Thromb Vasc Biol 22  :  1415–1420PubMedCrossRefGoogle Scholar
  46. Iomini C, Tejada K et al (2004) Primary cilia of human endothelial cells disassemble under laminar shear stress. J Cell Biol 164  :  811–817PubMedCrossRefGoogle Scholar
  47. Ishida T, Peterson TE et al (1996) MAP kinase activation by flow in endothelial cells. Role of beta 1 integrins and tyrosine kinases. Circ Res 79  :  310–316PubMedCrossRefGoogle Scholar
  48. Isshiki M, Ando J et al (1998) Endothelial Ca2+ waves preferentially originate at specific loci in caveolin-rich cell edges. Proc Natl Acad Sci USA 95  :  5009–5014PubMedCrossRefGoogle Scholar
  49. Jin ZG, Ueba H et al (2003) Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ Res 93  :  354–363PubMedCrossRefGoogle Scholar
  50. Jo H, Sipos K et al (1997) Differential effect of shear stress on extracellular signal-regulated kinase and N-terminal Jun kinase in endothelial cells. Gi2- and Gbeta/gamma-dependent signaling pathways. J Biol Chem 272  :  1395–1401PubMedCrossRefGoogle Scholar
  51. Kakisis JD, Liapis CD et al (2004) Effects of cyclic strain on vascular cells. Endothelium 11  :  17–28PubMedCrossRefGoogle Scholar
  52. Kamiya A, Ando J (1994) Fluid shear stress and vascular endothelial cell biomechanics. In: Hirasawa Y, Sledge CB et al (ed) Clinical Biomechanics and Related Research. Springer-Verlag Tokyo, pp 255–271Google Scholar
  53. Kamiya A, Bukhari R et al (1984) Adaptive regulation of wall shear stress optimizing vascular tree function. Bull Math Biol 46  :  127–137PubMedGoogle Scholar
  54. Khachigian LM, Anderson KR et al (1997) Egr-1 is activated in endothelial cells exposed to fluid shear stress and interacts with a novel shear-stress-response element in the PDGF A-chain promoter. Arterioscler Thromb Vasc Biol 17  :  2280–2286PubMedCrossRefGoogle Scholar
  55. Knudsen HL, Frangos JA (1997) Role of cytoskeleton in shear stress-induced endothelial nitric oxide production. Am J Physiol 273  :  H347–H355PubMedGoogle Scholar
  56. Kohler R, Heyken WT et al (2006) Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation. Arterioscler Thromb Vasc Biol 26  :  1495–1502PubMedCrossRefGoogle Scholar
  57. Korenaga R, Ando J et al (1994) Laminar flow stimulates ATP- and shear stress-dependent nitric oxide production in cultured bovine endothelial cells. Biochem Biophys Res Commun 198  :  213–219PubMedCrossRefGoogle Scholar
  58. Korenaga R, Ando J et al (1997) Negative transcriptional regulation of the VCAM-1 gene by fluid shear stress in murine endothelial cells. Am J Physiol 273  :  C1506–C1515PubMedGoogle Scholar
  59. Korenaga R, Yamamoto K et al (2001) Sp1-mediated downregulation of P2X4 receptor gene transcription in endothelial cells exposed to shear stress. Am J Physiol Heart Circ Physiol 280  :  H2214–H2221PubMedGoogle Scholar
  60. Kosaki K, Ando J et al (1998) Fluid shear stress increases the production of granulocyte-macrophage colony-stimulating factor by endothelial cells via mRNA stabilization. Circ Res 82  :  794–802PubMedCrossRefGoogle Scholar
  61. Krueger JW, Young DF et al (1971) An in vitro study of flow response by cells. J Biomech 4  :  31–36PubMedCrossRefGoogle Scholar
  62. Kuhlencordt PJ, Rosel E et al (2004) Role of endothelial nitric oxide synthase in endothelial activation: insights from eNOS knockout endothelial cells. Am J Physiol 286  :  C1195–C1202Google Scholar
  63. Laughlin MH, Newcomer SC et al (2008) Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype. J Appl Physiol 104  :  588–600PubMedCrossRefGoogle Scholar
  64. Laurindo FR, de Pedro M A et al (1994) Vascular free radical release. Ex vivo and in vivo evidence for a flow-dependent endothelial mechanism. Circ Res 74  :  700–709PubMedCrossRefGoogle Scholar
  65. Lee HJ, Koh GY (2003) Shear stress activates Tie2 receptor tyrosine kinase in human endothelial cells. Biochem Biophys Res Commun 304  :  399–404PubMedCrossRefGoogle Scholar
  66. Li S, Kim M et al (1997) Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. J Biol Chem 272  :  30455–30462PubMedCrossRefGoogle Scholar
  67. Lieu DK, Pappone PA et al (2004) Differential membrane potential and ion current responses to different types of shear stress in vascular endothelial cells. Am J Physiol Cell Physiol 286  :  C1367–C1375PubMedCrossRefGoogle Scholar
  68. Lin MC, Almus-Jacobs F et al (1997) Shear stress induction of the tissue factor gene. J Clin Invest 99  :  737–744PubMedCrossRefGoogle Scholar
  69. Lungu AO, Jin ZG et al (2004) Cyclosporin A inhibits flow-mediated activation of endothelial nitric-oxide synthase by altering cholesterol content in caveolae. J Biol Chem 279  :  48794–48800PubMedCrossRefGoogle Scholar
  70. Malek AM, Gibbons GH et al (1993) Fluid shear stress differentially modulates expression of gene encoding basic fibroblast growth factor and platelet-derived growth factor B chain in vascular endothelium. J Clin Invest 92  :  2013–2021PubMedCrossRefGoogle Scholar
  71. Mitsumata M, Fishel RS et al (1993) Fluid shear stress stimulates platelet-derived growth factor expression in endothelial cells. Am J Physiol 265  :  H3–H8PubMedGoogle Scholar
  72. Mochizuki S, Vink H et al (2003) Role of hyaluronic acid glycosaminoglycans in shear-induced endothelium-derived nitric oxide release. Am J Physiol Heart Circ Physiol 285  :  H722–H726PubMedGoogle Scholar
  73. Morita T, Yoshizumi M et al (1993) Shear stress increases heparin-binding epidermal growth factor-like growth factor mRNA levels in human vascular endothelial cells. Biochem Biophys Res Commun 197  :  256–262PubMedCrossRefGoogle Scholar
  74. Nakache M, Gaub HE (1988) Hydrodynamic hyperpolarization of endothelial cells. Proc Natl Acad Sci USA 85  :  1841–1843PubMedCrossRefGoogle Scholar
  75. Nauli SM, Kawanabe Y et al (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117  :  1161–1171PubMedCrossRefGoogle Scholar
  76. O’Neil RG, Heller S (2005) The mechanosensitive nature of TRPV channels. Pflugers Arch 451  :  193–203PubMedCrossRefGoogle Scholar
  77. Oancea E, Wolfe JT et al (2006) Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circ Res 98  :  245–253PubMedCrossRefGoogle Scholar
  78. Obi S, Yamamoto K et al (2009) Fluid shear stress induces arterial differentiation of endothelial progenitor cells. J Appl Physiol 106  :  203–211PubMedCrossRefGoogle Scholar
  79. Ohno M, Gibbons GH et al (1993) Shear stress elevates endothelial cGMP. Role of a potassium channel and G protein coupling. Circulation 88  :  193–197PubMedCrossRefGoogle Scholar
  80. Ohno M, Cooke JP et al (1995) Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade. J Clin Invest 95  :  1363–1369PubMedCrossRefGoogle Scholar
  81. Ohura N, Yamamoto K et al (2003) Global analysis of shear stress-responsive genes in vascular endothelial cells. J Atheroscler Thromb 10  :  304–313PubMedCrossRefGoogle Scholar
  82. Okahara K, Kambayashi J et al (1995) Shear stress induces expression of CNP gene in human endothelial cells. FEBS Lett 373  :  108–110PubMedCrossRefGoogle Scholar
  83. Olesen SP, Clapham DE et al (1988) Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331  :  168–170PubMedCrossRefGoogle Scholar
  84. Osawa M, Masuda M et al (2002) Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule? J Cell Biol 158  :  773–785PubMedCrossRefGoogle Scholar
  85. Park H, Go YM et al (1998) Plasma membrane cholesterol is a key molecule in shear stress-dependent activation of extracellular signal-regulated kinase. J Biol Chem 273  :  32304–32311PubMedCrossRefGoogle Scholar
  86. Park H, Go YM et al (2000) Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase. Am J Physiol Heart Circ Physiol 278  :  H1285–H1293PubMedGoogle Scholar
  87. Reigada D, Mitchell CH (2005) Release of ATP from retinal pigment epithelial cells involves both CFTR and vesicular transport. Am J Physiol Cell Physiol 288  :  C132–C140PubMedGoogle Scholar
  88. Resnick N, Yahav H et al (2003) Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol 81  :  177–199PubMedCrossRefGoogle Scholar
  89. Rieder MJ, Carmona R et al (1997) Suppression of angiotensin-converting enzyme expression and activity by shear stress. Circ Res 80  :  312–319PubMedCrossRefGoogle Scholar
  90. Rizzo V, McIntosh DP et al (1998) In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J Biol Chem 273  :  34724–34729PubMedCrossRefGoogle Scholar
  91. Rizzo V, Morton C et al (2003) Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am J Physiol Heart Circ Physiol 285  :  H1720–H1729PubMedGoogle Scholar
  92. Ruoslahti E (1991) Integrins. J Clin Invest 87  :  1–5PubMedCrossRefGoogle Scholar
  93. Secomb TW, Hsu R et al (2001) Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells. Biorheology 38  :  143–150PubMedGoogle Scholar
  94. Sharefkin JB, Diamond SL et al (1991) Fluid flow decreases preproendothelin mRNA levels and suppresses endothelin-1 peptide release in cultured human endothelial cells. J Vasc Surg 14  :  1–9PubMedCrossRefGoogle Scholar
  95. Shaul PW, Anderson RG (1998) Role of plasmalemmal caveolae in signal transduction. Am J Physiol 275  :  L843–L851PubMedGoogle Scholar
  96. Shay-Salit A, Shushy M et al (2002) VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc Natl Acad Sci USA 99  :  9462–9467PubMedCrossRefGoogle Scholar
  97. Shimizu N, Yamamoto K et al (2008) Cyclic strain induces mouse embryonic stem cell differentiation into vascular smooth muscle cells by activating PDGF receptor beta. J Appl Physiol 104  :  766–772PubMedCrossRefGoogle Scholar
  98. Shyy JY, Chien S (2002) Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91  :  769–775PubMedCrossRefGoogle Scholar
  99. Shyy JY, Lin MC et al (1995) The cis-acting phorbol ester “12-O-tetradecanoylphorbol 13-acetate”-responsive element is involved in shear stress-induced monocyte chemotactic protein 1 gene expression. Proc Natl Acad Sci USA 92  :  8069–8073PubMedCrossRefGoogle Scholar
  100. Siegel G, Walter A et al (1996) Anionic biopolymers as blood flow sensors. Biosens Bioelectron 11  :  281–294PubMedCrossRefGoogle Scholar
  101. Silacci P, Desgeorges A et al (2001) Flow pulsatility is a critical determinant of oxidative stress in endothelial cells. Hypertension 38  :  1162–1166PubMedCrossRefGoogle Scholar
  102. Singla V, Reiter JF (2006) The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313  :  629–633PubMedCrossRefGoogle Scholar
  103. Sokabe T, Yamamoto K et al (2004) Differential regulation of urokinase-type plasminogen activator expression by fluid shear stress in human coronary artery endothelial cells. Am J Physiol Heart Circ Physiol 287  :  H2027–H2034PubMedCrossRefGoogle Scholar
  104. Sterpetti AV, Cucina A et al (1993) Shear stress increases the release of interleukin-1 and interleukin-6 by aortic endothelial cells. Surgery 114  :  911–914PubMedGoogle Scholar
  105. Takada Y, Shinkai F et al (1994) Fluid shear stress increases the expression of thrombomodulin by cultured human endothelial cells. Biochem Biophys Res Commun 205  :  1345–1352PubMedCrossRefGoogle Scholar
  106. Tarbell JM, Pahakis MY (2006) Mechanotransduction and the glycocalyx. J Intern Med 259  :  339–350PubMedCrossRefGoogle Scholar
  107. Tzima E, Irani-Tehrani M et al (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437  :  426–431PubMedCrossRefGoogle Scholar
  108. Van der Heiden K, Hierck BP et al (2008) Endothelial primary cilia in areas of disturbed flow are at the base of atherosclerosis. Atherosclerosis 196  :  542–550PubMedCrossRefGoogle Scholar
  109. Wang JH, Thampatty BP (2008) Mechanobiology of adult and stem cells. Int Rev Cell Mol Biol 271  :  301–346PubMedCrossRefGoogle Scholar
  110. Wang N, Butler JP et al (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260  :  1124–1127PubMedCrossRefGoogle Scholar
  111. Wang N, Naruse K et al (2001) Mechanical behavior in living cells consistent with the tensegrity model. Proc Natl Acad Sci USA 98  :  7765–7770PubMedCrossRefGoogle Scholar
  112. Wang Y, Miao H et al (2002) Interplay between integrins and FLK-1 in shear stress-induced signaling. Am J Physiol Cell Physiol 283  :  C1540–C1547PubMedGoogle Scholar
  113. Weber M, Hagedorn CH et al (2005) Laminar shear stress and 3′ polyadenylation of eNOS mRNA. Circ Res 96  :  1161–1168PubMedCrossRefGoogle Scholar
  114. Weinbaum S, Zhang X et al (2003) Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci USA 100  :  7988–7995PubMedCrossRefGoogle Scholar
  115. Yamamoto K, Korenaga R et al (2000a) Fluid shear stress activates Ca(2+) influx into human endothelial cells via P2X4 purinoceptors. Circ Res 87  :  385–391PubMedCrossRefGoogle Scholar
  116. Yamamoto K, Korenaga R et al (2000b) P2X(4) receptors mediate ATP-induced calcium influx in human vascular endothelial cells. Am J Physiol Heart Circ Physiol 279  :  H285–H292PubMedGoogle Scholar
  117. Yamamoto K, Sokabe T et al (2003a) Endogenously released ATP mediates shear stress-induced Ca2+ influx into pulmonary artery endothelial cells. Am J Physiol Heart Circ Physiol 285  :  H793–H803PubMedGoogle Scholar
  118. Yamamoto K, Takahashi T et al (2003b) Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J Appl Physiol 95  :  2081–2088PubMedGoogle Scholar
  119. Yamamoto K, Sokabe T et al (2005) Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am J Physiol Heart Circ Physiol 288(4)  :  H1915–H1924PubMedCrossRefGoogle Scholar
  120. Yamamoto K, Sokabe T et al (2006) Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat Med 12  :  133–137PubMedCrossRefGoogle Scholar
  121. Yamamoto K, Shimizu N et al (2007) Involvement of cell surface ATP synthase in flow-induced ATP release by vascular endothelial cells. Am J Physiol Heart Circ Physiol 293  :  H1646–H1653PubMedCrossRefGoogle Scholar
  122. Yu J, Bergaya S et al (2006) Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J Clin Invest 116  :  1284–1291PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Laboratory of System Physiology, Department of Biomedical Engineering Graduate School of MedicineThe University of TokyoBunkyo-kuJapan
  2. 2.Laboratory of Biomedical Engineering School of MedicineDokkyo Medical UniversityMibuJapan

Personalised recommendations