Osteoclast Biology and Mechanosensing

  • Géraldine Pawlak
  • Virginie Vives
  • Anne Blangy
  • Emmanuelle Planus
  • Corinne Albiges-Rizo


Bone is a dynamic tissue undergoing permanent modeling and remodeling through the balanced activity of osteoclasts that resorb it and osteoblasts that produce new bone. Mechanical stimulation is known to play a key role for the maintenance of the skeleton. This implies sensing of extracellular signals by bone cells and their transduction into intracellular responses. In this review, we focus on the effects of mechanical signals on the biology of osteoclasts. We explore how mechanical stimuli directly influence osteoclast differentiation and bone resorbing activity. Podosomes, basic units of osteoclast adhesion structures, were recently shown to function as mechanosensors. We discuss how Src kinase and Rho family GTPases, which are podosomes constituents, could transduce mechanical signals towards the underlying actomyosin network in the osteoclast.


Bone Resorption Mechanical Stimulation Osteoclast Differentiation Tartrate Resistant Acid Phosphatase Osteoclast Precursor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by research grants from the Fondation pour la Recherche Médicale (DVO20081013473) and the Association pour la Recherche sur le Cancer (3897). Virginie Vives is a recipient of a post doctoral fellowship from the Association pour la Recherche sur le Cancer. The authors are grateful to Cécile Gauthier-Rouvière, Gilles Gadea, Gilles Uzé and Philippe Fort for critical reading of the manuscript.


  1. Baron R, Neff L, Van Tran P, Nefussi JR, Vignery A (1986) Kinetic and cytochemical identification of osteoclast precursors and their differentiation into multinucleated osteoclasts. Am J Pathol 122  :  363–378PubMedGoogle Scholar
  2. Berland S, Delattre O, Borzeix S, Catonne Y, Lopez E (2005) Nacre/bone interface changes in durable nacre endosseous implants in sheep. Biomaterials 26  :  2767–2773PubMedCrossRefGoogle Scholar
  3. Block MR, Badowski C, Millon-Fremillon A, Bouvard D, Bouin AP, Faurobert E, Gerber-Scokaert D, Planus E, Albiges-Rizo C (2008) Podosome-type adhesions and focal adhesions, so alike yet so different. Eur J Cell Biol 87  :  491–506PubMedCrossRefGoogle Scholar
  4. Bonewald LF (2006) Mechanosensation and transduction in osteocytes. Bonekey Osteovision 3  :  7–15PubMedCrossRefGoogle Scholar
  5. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423  :  337–342PubMedCrossRefGoogle Scholar
  6. Bozec L, de Groot J, Odlyha M, Nicholls B, Nesbitt S, Flanagan A, Horton M (2005) Atomic force microscopy of collagen structure in bone and dentine revealed by osteoclastic resorption. Ultramicroscopy 105  :  79–89PubMedCrossRefGoogle Scholar
  7. Brazier H, Stephens S, Ory S, Fort P, Morrison N, Blangy A (2006) Expression profile of RhoGTPases and RhoGEFs during RANKL-stimulated osteoclastogenesis: identification of essential genes in osteoclasts. J Bone Miner Res 21  :  1387–1398PubMedCrossRefGoogle Scholar
  8. Brazier H, Pawlak G, Vives V, Blangy A (2009) The Rho GTPase Wrch1 regulates osteoclast precursor adhesion and migration. Int J Biochem Cell Biol 41  :  1391–1401PubMedCrossRefGoogle Scholar
  9. Cardoso L, Herman BC, Verborgt O, Laudier D, Majeska RJ, Schaffler MB (2009) Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J Bone Miner Res 24  :  597–605PubMedCrossRefGoogle Scholar
  10. Cella M, Buonsanti C, Strader C, Kondo T, Salmaggi A, Colonna M (2003) Impaired differentiation of osteoclasts in TREM-2-deficient individuals. J Exp Med 198  :  645–651PubMedCrossRefGoogle Scholar
  11. Chabadel A, Banon-Rodriguez I, Cluet D, Rudkin BB, Wehrle-Haller B, Genot E, Jurdic P, Anton IM, Saltel F (2007) CD44 and beta3 integrin organize two functionally distinct actin-based domains in osteoclasts. Mol Biol Cell 18  :  4899–4910PubMedCrossRefGoogle Scholar
  12. Chambers TJ, Thomson BM, Fuller K (1984) Effect of substrate composition on bone resorption by rabbit osteoclasts. J Cell Sci 70  :  61–71PubMedGoogle Scholar
  13. Chapurlat RD, Delmas PD (2009) Bone microdamage: a clinical perspective. Osteoporos Int 20  :  1299–1308PubMedCrossRefGoogle Scholar
  14. Chellaiah MA, Soga N, Swanson S, McAllister S, Alvarez U, Wang D, Dowdy SF, Hruska KA (2000) Rho-A is critical for osteoclast podosome organization, motility, and bone resorption. J Biol Chem 275  :  11993–12002PubMedCrossRefGoogle Scholar
  15. Chen CS (2008) Mechanotransduction – a field pulling together? J Cell Sci 121  :  3285–3292PubMedCrossRefGoogle Scholar
  16. Chou SY, Cheng CM, Leduc PR (2009) Composite polymer systems with control of local substrate elasticity and their effect on cytoskeletal and morphological characteristics of adherent cells. Biomaterials 30  :  3136–3142PubMedCrossRefGoogle Scholar
  17. Chuang YY, Valster A, Coniglio SJ, Backer JM, Symons M (2007) The atypical Rho family GTPase Wrch-1 regulates focal adhesion formation and cell migration. J Cell Sci 120  :  1927–1934PubMedCrossRefGoogle Scholar
  18. Clark K, Langeslag M, Figdor CG, van Leeuwen FN (2007) Myosin II and mechanotransduction: a balancing act. Trends Cell Biol 17  :  178–186PubMedCrossRefGoogle Scholar
  19. Cogoli A (1993) The effect of hypogravity and hypergravity on cells of the immune system. J Leukoc Biol 54  :  259–268PubMedGoogle Scholar
  20. Collin O, Tracqui P, Stephanou A, Usson Y, Clement-Lacroix J, Planus E (2006) Spatiotemporal dynamics of actin-rich adhesion microdomains: influence of substrate flexibility. J Cell Sci 119  :  1914–1925PubMedCrossRefGoogle Scholar
  21. Collin O, Na S, Chowdhury F, Hong M, Shin ME, Wang F, Wang N (2008) Self-organized podosomes are dynamic mechanosensors. Curr Biol 18  :  1288–1294PubMedCrossRefGoogle Scholar
  22. Destaing O, Saltel F, Geminard JC, Jurdic P, Bard F (2003) Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol Biol Cell 14  :  407–416PubMedCrossRefGoogle Scholar
  23. Destaing O, Saltel F, Gilquin B, Chabadel A, Khochbin S, Ory S, Jurdic P (2005) A novel Rho-mDia2-HDAC6 pathway controls podosome patterning through microtubule acetylation in osteoclasts. J Cell Sci 118  :  2901–2911PubMedCrossRefGoogle Scholar
  24. Destaing O, Sanjay A, Itzstein C, Horne WC, Toomre D, De Camilli P, Baron R (2008) The tyrosine kinase activity of c-Src regulates actin dynamics and organization of podosomes in osteoclasts. Mol Biol Cell 19  :  394–404PubMedCrossRefGoogle Scholar
  25. Doi Y, Iwanaga H, Shibutani T, Moriwaki Y, Iwayama Y (1999) Osteoclastic responses to various calcium phosphates in cell cultures. J Biomed Mater Res 47  :  424–33PubMedCrossRefGoogle Scholar
  26. Duplat D, Chabadel A, Gallet M, Berland S, Bedouet L, Rousseau M, Kamel S, Milet C, Jurdic P, Brazier M, Lopez E (2007) The in vitro osteoclastic degradation of nacre. Biomaterials 28  :  2155–2162PubMedCrossRefGoogle Scholar
  27. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126  :  677–689PubMedCrossRefGoogle Scholar
  28. Fereol S, Fodil R, Labat B, Galiacy S, Laurent VM, Louis B, Isabey D, Planus E (2006) Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties. Cell Motil Cytoskeleton 63  :  321–340PubMedCrossRefGoogle Scholar
  29. Fereol S, Fodil R, Laurent VM, Balland M, Louis B, Pelle G, Henon S, Planus E, Isabey D (2009) Prestress and adhesion site dynamics control cell sensitivity to extracellular stiffness. Biophys J 96  :  2009–2022PubMedCrossRefGoogle Scholar
  30. Geblinger D, Geiger B, Addadi L (2009) Surface-induced regulation of podosome organization and dynamics in cultured osteoclasts. Chembiochem 10  :  158–165PubMedCrossRefGoogle Scholar
  31. Geiger B, Bershadsky A (2002) Exploring the neighborhood: adhesion-coupled cell mechanosensors. Cell 110  :  139–142PubMedCrossRefGoogle Scholar
  32. Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10  :  21–33PubMedCrossRefGoogle Scholar
  33. Giannone G, Sheetz MP (2006) Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol 16  :  213–223PubMedCrossRefGoogle Scholar
  34. Gil-Henn H, Destaing O, Sims NA, Aoki K, Alles N, Neff L, Sanjay A, Bruzzaniti A, De Camilli P, Baron R, Schlessinger J (2007) Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in Pyk2(−/−) mice. J Cell Biol 178  :  1053–1064PubMedCrossRefGoogle Scholar
  35. Gomi K, Lowenberg B, Shapiro G, Davies JE (1993) Resorption of sintered synthetic hydroxyapatite by osteoclasts in vitro. Biomaterials 14  :  91–96PubMedCrossRefGoogle Scholar
  36. Hassenkam T, Fantner GE, Cutroni JA, Weaver JC, Morse DE, Hansma PK (2004) High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35  :  4–10PubMedCrossRefGoogle Scholar
  37. Hassenkam T, Jorgensen HL, Lauritzen JB (2006) Mapping the imprint of bone remodeling by atomic force microscopy. Anat Rec A Discov Mol Cell Evol Biol 288  :  1087–1094PubMedGoogle Scholar
  38. Hentunen TA, Jackson SH, Chung H, Reddy SV, Lorenzo J, Choi SJ, Roodman GD (1999) Characterization of immortalized osteoclast precursors developed from mice transgenic for both bcl-X(L) and simian virus 40 large T antigen. Endocrinology 140  :  2954–2961PubMedCrossRefGoogle Scholar
  39. Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ, Sarosi I, Wang L, Xia XZ, Elliott R, Chiu L, Black T, Scully S, Capparelli C, Morony S, Shimamoto G, Bass MB, Boyle WJ (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 96  :  3540–3545PubMedCrossRefGoogle Scholar
  40. Ishijima M, Tsuji K, Rittling SR, Yamashita T, Kurosawa H, Denhardt DT, Nifuji A, Ezura Y, Noda M (2007) Osteopontin is required for mechanical stress-dependent signals to bone marrow cells. J Endocrinol 193  :  235–243PubMedCrossRefGoogle Scholar
  41. Ishikawa S, Arase N, Suenaga T, Saita Y, Noda M, Kuriyama T, Arase H, Saito T (2004) Involvement of FcRgamma in signal transduction of osteoclast-associated receptor (OSCAR). Int Immunol 16  :  1019–1025PubMedCrossRefGoogle Scholar
  42. Jiang G, Huang AH, Cai Y, Tanase M, Sheetz MP (2006) Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPalpha. Biophys J 90  :  1804–1809PubMedCrossRefGoogle Scholar
  43. Kadow-Romacker A, Hoffmann JE, Duda G, Wildemann B, Schmidmaier G (2009) Effect of mechanical stimulation on osteoblast- and osteoclast-like cells in vitro. Cells Tissues Organs 190  :  61–68PubMedCrossRefGoogle Scholar
  44. Kanehisa J, Heersche JN (1988) Osteoclastic bone resorption: in vitro analysis of the rate of resorption and migration of individual osteoclasts. Bone 9  :  73–79PubMedCrossRefGoogle Scholar
  45. Katsumi A, Orr AW, Tzima E, Schwartz MA (2004) Integrins in mechanotransduction. J Biol Chem 279  :  12001–12004PubMedCrossRefGoogle Scholar
  46. Khatiwala CB, Kim PD, Peyton SR, Putnam AJ (2009) ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J Bone Miner Res 24(5)  :  886–898PubMedCrossRefGoogle Scholar
  47. Kim N, Takami M, Rho J, Josien R, Choi Y (2002) A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J Exp Med 195  :  201–209PubMedGoogle Scholar
  48. Kostic A, Sheetz MP (2006) Fibronectin rigidity response through Fyn and p130Cas recruitment to the leading edge. Mol Biol Cell 17  :  2684–2695PubMedCrossRefGoogle Scholar
  49. Krits I, Wysolmerski RB, Holliday LS, Lee BS (2002) Differential localization of myosin II isoforms in resting and activated osteoclasts. Calcif Tissue Int 71  :  530–538PubMedCrossRefGoogle Scholar
  50. Kurata K, Uemura T, Nemoto A, Tateishi T, Murakami T, Higaki H, Miura H, Iwamoto Y (2001) Mechanical strain effect on bone-resorbing activity and messenger RNA expressions of marker enzymes in isolated osteoclast culture. J Bone Miner Res 16  :  722–730PubMedCrossRefGoogle Scholar
  51. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93  :  165–176PubMedCrossRefGoogle Scholar
  52. Lakkakorpi PT, Vaananen HK (1991) Kinetics of the osteoclast cytoskeleton during the resorption cycle in vitro. J Bone Miner Res 6  :  817–826PubMedCrossRefGoogle Scholar
  53. Lakkakorpi PT, Nakamura I, Nagy RM, Parsons JT, Rodan GA, Duong LT (1999) Stable association of PYK2 and p130(Cas) in osteoclasts and their co-localization in the sealing zone. J Biol Chem 274  :  4900–4907PubMedCrossRefGoogle Scholar
  54. LeBlanc AD, Spector ER, Evans HJ, Sibonga JD (2007) Skeletal responses to space flight and the bed rest analog: a review. J Musculoskelet Neuronal Interact 7  :  33–47PubMedGoogle Scholar
  55. Linder S (2007) The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol 17  :  107–117PubMedCrossRefGoogle Scholar
  56. Luxenburg C, Parsons JT, Addadi L, Geiger B (2006) Involvement of the Src-cortactin pathway in podosome formation and turnover during polarization of cultured osteoclasts. J Cell Sci 119  :  4878–4888PubMedCrossRefGoogle Scholar
  57. Luxenburg C, Geblinger D, Klein E, Anderson K, Hanein D, Geiger B, Addadi L (2007) The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly. PLoS One 2  :  e179PubMedCrossRefGoogle Scholar
  58. MacQuarrie RA, Fang Chen Y, Coles C, Anderson GI (2004) Wear-particle-induced osteoclast osteolysis: the role of particulates and mechanical strain. J Biomed Mater Res B Appl Biomater 69  :  104–112PubMedCrossRefGoogle Scholar
  59. Makihira S, Kawahara Y, Yuge L, Mine Y, Nikawa H (2008) Impact of the microgravity environment in a 3-dimensional clinostat on osteoblast- and osteoclast-like cells. Cell Biol Int 32  :  1176–1181PubMedCrossRefGoogle Scholar
  60. Martin TJ, Seeman E (2008) Bone remodelling: its local regulation and the emergence of bone fragility. Best Pract Res Clin Endocrinol Metab 22  :  701–722PubMedCrossRefGoogle Scholar
  61. Matsunaga T, Inoue H, Kojo T, Hatano K, Tsujisawa T, Uchiyama C, Uchida Y (1999) Disaggregated osteoclasts increase in resorption activity in response to roughness of bone surface. J Biomed Mater Res 48  :  417–423PubMedCrossRefGoogle Scholar
  62. McMichael BK, Wysolmerski RB, Lee BS (2009) Regulated proteolysis of nonmuscle myosin IIA stimulates osteoclast fusion. J Biol Chem 284  :  12266–12275PubMedCrossRefGoogle Scholar
  63. Mitteregger R, Vogt G, Rossmanith E, Falkenhagen D (1999) Rotary cell culture system (RCCS): a new method for cultivating hepatocytes on microcarriers. Int J Artif Organs 22  :  816–822PubMedGoogle Scholar
  64. Miyamoto T, Arai F, Ohneda O, Takagi K, Anderson DM, Suda T (2000) An adherent condition is required for formation of multinuclear osteoclasts in the presence of macrophage colony-stimulating factor and receptor activator of nuclear factor kappa B ligand. Blood 96  :  4335–4343PubMedGoogle Scholar
  65. Morey-Holton ER, Globus RK (2002) Hindlimb unloading rodent model: technical aspects. J Appl Physiol 92  :  1367–1377PubMedCrossRefGoogle Scholar
  66. Mulari MT, Zhao H, Lakkakorpi PT, Vaananen HK (2003) Osteoclast ruffled border has distinct subdomains for secretion and degraded matrix uptake. Traffic 4  :  113–125PubMedCrossRefGoogle Scholar
  67. Nakamura I, Rodan GA, le Duong T (2003) Distinct roles of p130Cas and c-Cbl in adhesion-induced or macrophage colony-stimulating factor-mediated signaling pathways in prefusion osteoclasts. Endocrinology 144  :  4739–4741PubMedCrossRefGoogle Scholar
  68. Ory S, Brazier H, Blangy A (2007) Identification of a bipartite focal adhesion localization signal in RhoU/Wrch-1, a Rho family GTPase that regulates cell adhesion and migration. Biol Cell 99  :  701–716PubMedCrossRefGoogle Scholar
  69. Ory S, Brazier H, Pawlak G, Blangy A (2008) Rho GTPases in osteoclasts: orchestrators of podosome arrangement. Eur J Cell Biol 87  :  469–477PubMedCrossRefGoogle Scholar
  70. Paloneva J, Mandelin J, Kiialainen A, Bohling T, Prudlo J, Hakola P, Haltia M, Konttinen YT, Peltonen L (2003) DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features. J Exp Med 198  :  669–675PubMedCrossRefGoogle Scholar
  71. Puklin-Faucher E, Sheetz MP (2009) The mechanical integrin cycle. J Cell Sci 122  :  179–186PubMedCrossRefGoogle Scholar
  72. Qin YX, Rubin CT, McLeod KJ (1998) Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology. J Orthop Res 16  :  482–489PubMedCrossRefGoogle Scholar
  73. Ramaswamy Y, Haynes DR, Berger G, Gildenhaar R, Lucas H, Holding C, Zreiqat H (2005) Bioceramics composition modulate resorption of human osteoclasts. J Mater Sci Mater Med 16  :  1199–1205PubMedCrossRefGoogle Scholar
  74. Rho JY, Tsui TY, Pharr GM (1997) Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18  :  1325–1330PubMedCrossRefGoogle Scholar
  75. Roodman GD (1999) Cell biology of the osteoclast. Exp Hematol 27  :  1229–1241PubMedCrossRefGoogle Scholar
  76. Rubin J, Biskobing D, Fan X, Rubin C, McLeod K, Taylor WR (1997) Pressure regulates osteoclast formation and MCSF expression in marrow culture. J Cell Physiol 170  :  81–87PubMedCrossRefGoogle Scholar
  77. Rubin J, Fan X, Biskobing DM, Taylor WR, Rubin CT (1999) Osteoclastogenesis is repressed by mechanical strain in an in vitro model. J Orthop Res 17  :  639–645PubMedCrossRefGoogle Scholar
  78. Rubin J, Murphy T, Nanes MS, Fan X (2000) Mechanical strain inhibits expression of osteoclast differentiation factor by murine stromal cells. Am J Physiol Cell Physiol 278  :  C1126–C1132PubMedGoogle Scholar
  79. Rubin J, Rubin C, Jacobs CR (2006) Molecular pathways mediating mechanical signaling in bone. Gene 367  :  1–16PubMedCrossRefGoogle Scholar
  80. Saltel F, Destaing O, Bard F, Eichert D, Jurdic P (2004) Apatite-mediated actin dynamics in resorbing osteoclasts. Mol Biol Cell 15  :  5231–5241PubMedCrossRefGoogle Scholar
  81. Saltel F, Chabadel A, Zhao Y, Lafage-Proust MH, Clezardin P, Jurdic P, Bonnelye E (2006) Transmigration: a new property of mature multinucleated osteoclasts. J Bone Miner Res 21  :  1913–1923PubMedCrossRefGoogle Scholar
  82. Saltel F, Chabadel A, Bonnelye E, Jurdic P (2008) Actin cytoskeletal organisation in osteoclasts: a model to decipher transmigration and matrix degradation. Eur J Cell Biol 87  :  459–468PubMedCrossRefGoogle Scholar
  83. Sarasa-Renedo A, Tunc-Civelek V, Chiquet M (2006) Role of RhoA/ROCK-dependent actin contractility in the induction of tenascin-C by cyclic tensile strain. Exp Cell Res 312  :  1361–1370PubMedCrossRefGoogle Scholar
  84. Sawada Y, Tamada M, Dubin-Thaler BJ, Cherniavskaya O, Sakai R, Tanaka S, Sheetz MP (2006) Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127  :  1015–1026PubMedCrossRefGoogle Scholar
  85. Saxena R, Pan G, McDonald JM (2007) Osteoblast and osteoclast differentiation in modeled microgravity. Ann N Y Acad Sci 1116  :  494–498PubMedCrossRefGoogle Scholar
  86. Schwartz MA, DeSimone DW (2008) Cell adhesion receptors in mechanotransduction. Curr Opin Cell Biol 20  :  551–556PubMedCrossRefGoogle Scholar
  87. Shen Z, Crotti TN, McHugh KP, Matsuzaki K, Gravallese EM, Bierbaum BE, Goldring SR (2006) The role played by cell-substrate interactions in the pathogenesis of osteoclast-mediated peri-implant osteolysis. Arthritis Res Ther 8  :  R70PubMedCrossRefGoogle Scholar
  88. Sims NA, Gooi JH (2008) Bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol 19  :  444–451PubMedCrossRefGoogle Scholar
  89. Skerry TM (2008) The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys 473  :  117–123PubMedCrossRefGoogle Scholar
  90. Spence G, Phillips S, Campion C, Brooks R, Rushton N (2008) Bone formation in a carbonate-substituted hydroxyapatite implant is inhibited by zoledronate: the importance of bioresorption to osteoconduction. J Bone Joint Surg Br 90  :  1635–1640PubMedCrossRefGoogle Scholar
  91. Spence G, Patel N, Brooks R, Rushton N (2009) Carbonate substituted hydroxyapatite: resorption by osteoclasts modifies the osteoblastic response. J Biomed Mater Res A 90  :  217–224PubMedGoogle Scholar
  92. Takahashi N, Udagawa N, Suda T (1999) A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem Biophys Res Commun 256  :  449–455PubMedCrossRefGoogle Scholar
  93. Tamma R, Colaianni G, Camerino C, Di Benedetto A, Greco G, Strippoli M, Vergari R, Grano A, Mancini L, Mori G, Colucci S, Grano M, Zallone A (2009) Microgravity during spaceflight directly affects in vitro osteoclastogenesis and bone resorption. FASEB J 23  :  2549–2554PubMedCrossRefGoogle Scholar
  94. Teti A, Zallone A (2009) Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone 44  :  11–16PubMedCrossRefGoogle Scholar
  95. Turner CH, Rho J, Takano Y, Tsui TY, Pharr GM (1999) The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech 32  :  437–441PubMedCrossRefGoogle Scholar
  96. Vaananen HK, Laitala-Leinonen T (2008) Osteoclast lineage and function. Arch Biochem Biophys 473  :  132–138PubMedCrossRefGoogle Scholar
  97. Wang JH, Thampatty BP, Lin JS, Im HJ (2007) Mechanoregulation of gene expression in fibroblasts. Gene 391  :  1–15PubMedCrossRefGoogle Scholar
  98. Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10  :  75–82PubMedCrossRefGoogle Scholar
  99. Zhang SJ, Truskey GA, Kraus WE (2007) Effect of cyclic stretch on beta1D-integrin expression and activation of FAK and RhoA. Am J Physiol Cell Physiol 292  :  C2057–C2069PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Géraldine Pawlak
    • 1
  • Virginie Vives
    • 1
  • Anne Blangy
    • 1
  • Emmanuelle Planus
    • 2
  • Corinne Albiges-Rizo
    • 2
  1. 1.Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRSMontpellier Cedex 5France
  2. 2.Institut Albert Bonniot, INSERM U823, CNRS ERL3148 Université Joseph Fourier, Equipe DySADGrenoble Cedex 9France

Personalised recommendations