Skip to main content

Nanotechnology in Mechanobiology: Mechanical Manipulation of Cells and Organelle While Monitoring Intracellular Signaling

  • Chapter
  • 920 Accesses

Abstract

Cell migration requires a regulated interplay of actin-filament dynamics and turnover of cell-matrix adhesions. These processes are mechanically coupled by a large complex of cytoplasmic proteins linking adhesive molecules to cytoskeletons. To explore the molecular mechanisms underlying the force-dependent cell responses including remodeling of cytoskeletons, focal adhesive contacts, and of cell-shapes, it is crucial to apply precisely controlled mechanical stimuli (ranging from pN to nN) to cells and to observe the response with a high spatial–temporal resolution (ranging from 100 nm to 1 μm, and 1 ms to 1 min) in living cells. In this chapter, we describe a variety of methods for controlled mechanical stimulations and for monitoring the responses of cells, and our recent research. We employed precisely controlled mechanical stimuli to explore the molecular mechanism underlying the mechanosensing, and the mechano-induced signaling, e.g., activation of mechanosensitive (MS) channels, intracellular calcium ion concentration ([Ca2+]i) increases, adhesive contact formation and mechano-induced reorganization of cytoskeletons in live cells including neuronal growth cones and human umbilical vein endothelial cells (HUVECs).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Block SM (1990) Optical tweezers: a new tool for biophysics. In: Noninvasive techniques in cell biology. Wiley-Liss Inc, New York, pp 375–402

    Google Scholar 

  • Byfield FJ, Aranda-Espinoza H, Romanenko VG, Rothblat GH, Levitan I (2004) Cholesterol depletion increases membrane stiffness of aortic endothelial cells. Biophys J 87  :  3336–3343

    Article  PubMed  CAS  Google Scholar 

  • Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung ELM, Derfler BH, Duggan A, Geleoc GSG, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432  :  723–730

    Article  PubMed  CAS  Google Scholar 

  • Corry B, Rigby P, Liu ZW, Martinac B (2005) Conformational changes involved in MscL channel gating measured using FRET spectroscopy. Biophys J 89  :  L49–L51

    Article  PubMed  CAS  Google Scholar 

  • Dai J, Sheetz MP (1995) Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophys J 68  :  988–996

    Article  PubMed  CAS  Google Scholar 

  • Dai J, Sheetz MP (1999) Membrane tether formation from blebbing cells. Biophys J 77  :  3363–3370

    Article  PubMed  CAS  Google Scholar 

  • Dembo M, Wang YL (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76  :  2307–2316

    Article  PubMed  CAS  Google Scholar 

  • Doyle AD, Lee J (2005) Cyclic changes in keratocyte speed and traction stress arise from Ca2+-dependent regulation of cell adhesiveness. J Cell Sci 118  :  369–379

    Article  PubMed  CAS  Google Scholar 

  • Drake CJ, Davis LA, Hungerford JE, Little CD (1992) Perturbation of beta 1 integrin-mediated adhesions results in altered somite cell shape and behavior. Dev Biol 149  :  327–338

    Article  PubMed  CAS  Google Scholar 

  • Du HP, Gu GQ, William CM, Chalfie M (1996) Extracellular proteins needed for C-elegans mechanosensation. Neuron 16  :  183–194

    Article  PubMed  CAS  Google Scholar 

  • Evans EA, Waugh R (1977) Osmotic correction to elastic area compressibility measurements on red-cell membrane. Biophys J 20  :  307–313

    Article  PubMed  CAS  Google Scholar 

  • Fukushige T, Siddiqui ZK, Chou M, Culotti JG, Gogonea CB, Siddiqui SS, Hamelin M (1999) MEC-12, an alpha-tubulin required for touch sensitivity in C-elegans. J Cell Sci 112  :  395–403

    PubMed  CAS  Google Scholar 

  • Giannone G, Jiang G, Sutton DH, Critchley DR, Sheetz MP (2003) Talin1 is critical for force-dependent reinforcement of initial integrin-cytoskeleton bonds but not tyrosine kinase activation. J Cell Biol 163  :  409–419

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb P, Folgering J, Maroto R, Raso A, Wood TG, Kurosky A, Bowman C, Bichet D, Patel A, Sachs F, Martinac B, Hamill OP, Honore E (2008) Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Archiv Eur J Physiol 455  :  1097–1103

    Article  CAS  Google Scholar 

  • Gullingsrud J, Schulten K (2003) Gating of MscL studied by steered molecular dynamics. Biophys J 85  :  2087–2099

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa K, Tatsumi H, Sokabe M (2008) Actin stress fibers transmit and focus force to activate mechanosensitive channels. J Cell Sci 121  :  496–503

    Article  PubMed  CAS  Google Scholar 

  • Hirata H, Tatsumi H, Sokabe M (2004) Tension-dependent formation of stress fibers in fibroblasts: a study using semi-intact cells. JSME Int J Ser C 47  :  962–969

    Article  Google Scholar 

  • Hodgkin AL, Keynes RD (1957) Movements of labelled calcium in squid giant axons. J Physiol (Lond) 138  :  253–281

    CAS  Google Scholar 

  • Hu SH, Chen JX, Fabry B, Numaguchi Y, Gouldstone A, Ingber DE, Fredberg JJ, Butler JP, Wang N (2003) Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. Am J Physiol Cell Physiol 285  :  C1082–C1090

    PubMed  CAS  Google Scholar 

  • Iba T, Sumpio BE (1991) Morphological response of human endothelial cells subjected to cyclic strain in vitro. Microvasc Res 42  :  245–254

    Article  PubMed  CAS  Google Scholar 

  • Imai K, Tatsumi H, Katayama Y (2000) Mechanosensitive chloride channels on the growth cones of cultured rat dorsal root ganglion neurons. Neuroscience 97  :  347–355

    Article  PubMed  CAS  Google Scholar 

  • Jacobson BS, Cronin J, Branton D (1978) Coupling polylysine to glass beads for plasma membrane isolation. Biochim Biophys Acta 506  :  81–96

    Article  PubMed  CAS  Google Scholar 

  • Kawakami K, Tatsumi H, Sokabe M (2001) Dynamics of integrin clustering at focal contacts of endothelial cells studied by multimode imaging microscopy. J Cell Sci 114  :  3125–3135

    PubMed  CAS  Google Scholar 

  • Kojima H, Ishijima A, Yanagida T (1994) Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. Proc Natl Acad Sci USA 91  :  12962–12966

    Article  PubMed  CAS  Google Scholar 

  • Lansman JB, Hallam TJ, Rink TJ (1987) Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature 325  :  811–813

    Article  PubMed  CAS  Google Scholar 

  • Machiyama H, Tatsumi H, Sokabe M (2009) Structural changes in the cytoplasmic domain of the mechanosensitive channel MscS during opening. Biophys J 97  :  1048–1057

    Article  PubMed  CAS  Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7  :  179–185

    Article  PubMed  CAS  Google Scholar 

  • Munevar S, Wang Y, Dembo M (2001) Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys J 80  :  1744–1757

    Article  PubMed  CAS  Google Scholar 

  • Munevar S, Wang YL, Dembo M (2004) Regulation of mechanical interactions between fibroblasts and the substratum by stretch-activated Ca2+ entry. J Cell Sci 117  :  85–92

    Article  PubMed  CAS  Google Scholar 

  • Naruse K, Sokabe M (1993) Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells. Am J Physiol 264  :  C1037–C1044

    PubMed  CAS  Google Scholar 

  • Naruse K, Sai X, Yokoyama N, Sokabe M (1998a) Uni-axial cyclic stretch induces c-src activation and translocation in human endothelial cells via SA channel activation. FEBS Lett 441  :  111–115

    Article  PubMed  CAS  Google Scholar 

  • Naruse K, Yamada T, Sokabe M (1998b) Involvement of SA channels in orienting response of cultured endothelial cells to cyclic stretch. Am J Physiol 274  :  H1532–H1538

    PubMed  CAS  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112  :  453–465

    Article  PubMed  CAS  Google Scholar 

  • Popp R, Hoyer J, Meyer J, Galla HJ, Gogelein H (1992) Stretch-activated non-selective cation channels in the antiluminal membrane of porcine cerebral capillaries. J Physiol 454  :  435–449

    PubMed  CAS  Google Scholar 

  • Pourati J, Maniotis A, Spiegel D, Schaffer JL, Butler JP, Fredberg JJ, Ingber DE, Stamenovic D, Wang N (1998) Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Am J Physiol 274  :  C1283–C1289

    PubMed  CAS  Google Scholar 

  • Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302  :  1704–1709

    Article  PubMed  CAS  Google Scholar 

  • Sachs F (1991) Mechanical transduction by membrane ion channels: a mini review. Mol Cell Biochem 104  :  57–60

    Article  PubMed  CAS  Google Scholar 

  • Shi F, Chiu YJ, Cho YS, Bullard TA, Sokabe M, Fujiwara K (2007) Down-regulation of ERK but not MEK phosphorylation in cultured endothelial cells by repeated changes in cyclic stretch. Cardiovasc Res 73  :  813–822

    Article  PubMed  CAS  Google Scholar 

  • Shirinsky VP, Antonov AS, Birukov KG, Sobolevsky AV, Romanov YA, Kabaeva NV, Antonova GN, Smirnov VN (1989) Mechano-chemical control of human endothelium orientation and size. J Cell Biol 109  :  331–339

    Article  PubMed  CAS  Google Scholar 

  • Sokabe M, Sachs F, Jing Z (1991) Quantitative video microscopy of patch clamped membranes stress, strain, capacitance, and stretch channel activation. Biophys J 59  :  722–728

    Article  PubMed  CAS  Google Scholar 

  • Sukharev SI, Sigurdson WJ, Kung C, Sachs F (1999) Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J Gen Physiol 113  :  525–540

    Article  PubMed  CAS  Google Scholar 

  • Szaszak M, Gaborik Z, Turu G, McPherson PS, Clark AJ, Catt KJ, Hunyady L (2002) Role of the proline-rich domain of dynamin-2 and its interactions with Src homology 3 domains during endocytosis of the AT1 angiotensin receptor. J Biol Chem 277  :  21650–21656

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Naruse K, Sokabe M (2005) Effects of mechanical stresses on the migrating behavior of endothelial cells. In: Wada H (ed) Biomechanics at micro and nanoscale levels, vol I. World Scientific Publishing, Singapore, pp 75–87

    Chapter  Google Scholar 

  • Tatsumi H, Katayama Y (1999) Growth cones exhibit enhanced cell–cell adhesion after neurotransmitter release. Neuroscience 99  :  855–865

    Article  Google Scholar 

  • Wang GX, Poo MM (2005) Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature 434  :  898–904

    Article  PubMed  CAS  Google Scholar 

  • Wang JG, Miyazu M, Matsushita E, Sokabe M, Naruse K (2001) Uniaxial cyclic stretch induces focal adhesion kinase (FAK) tyrosine phosphorylation followed by mitogen-activated protein kinase (MAPK) activation. Biochem Biophys Res Commun 288  :  356–361

    Article  PubMed  CAS  Google Scholar 

  • Yao X, Kwan H, Huang Y (2001) Stretch-sensitive switching among different channel sublevels of an endothelial cation channel. Biochim Biophys Acta 1511  :  381–390

    Article  PubMed  CAS  Google Scholar 

  • Zamir E, Katz BZ, Aota S, Yamada KM, Geiger B, Kam Z (1999) Molecular diversity of cell-matrix adhesions. J Cell Sci 112(Pt 11)  :  1655–1669

    PubMed  CAS  Google Scholar 

  • Zenisek D, Davila V, Wan L, Almers W (2003) Imaging calcium entry sites and ribbon structures in two presynaptic cells. J Neurosci 23  :  2538–2548

    PubMed  CAS  Google Scholar 

  • Zhang Y, Gao F, Popov VL, Wen JW, Hamill OP (2000) Mechanically gated channel activity in cytoskeleton-deficient plasma membrane blebs and vesicles from Xenopus oocytes. J Physiol (Lond) 523  :  117–130

    Article  CAS  Google Scholar 

  • Zou H, Lifshitz LM, Tuft RA, Fogarty KE, Singer JJ (2002) Visualization of Ca2+ entry through single stretch-activated cation channels. Proc Natl Acad Sci USA 99  :  6404–6409

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-aid for General Scientific Research (#13480216 to M.S. and #14580769 to H.T.), Scientific Research on Priority Areas (#15086270 to M.S.) and Creative Research (#16GS0308 to M.S.) from the Ministry of Education Science Sports and Culture and a grant from Japan Space Forum (to M.S. and H.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Tatsumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Tatsumi, H., Hayakawa, K., Sokabe, M. (2011). Nanotechnology in Mechanobiology: Mechanical Manipulation of Cells and Organelle While Monitoring Intracellular Signaling. In: Noda, M. (eds) Mechanosensing Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-89757-6_1

Download citation

Publish with us

Policies and ethics